Cheap Electric Car Drives Again with Charger Repair

If someone sent you an advert for an electric car with a price too low to pass up, what would you do? [Leadacid44] was in that lucky situation, and since it was crazy cheap, bought the car.

Of course, there’s always a problem of some kind with any cheap car, and this one was no exception. In this case, making it ‘go’ for any reasonable distance was the problem. Eventually a faulty battery charging system was diagnosed and fixed, but not before chasing down a few other possibilities. While the eventual solution was a relatively simple one the write-up of the car and the process of finding it makes for an interesting read.

The car in question is a ZENN, a Canadian-made and electric-powered licensed version of the French Microcar MC2 low-speed city car with a 72 volt lead-acid battery pack that gives a range of about 40 miles and a limited top speed of 25 miles per hour. Not a vehicle that is an uncommon sight in European cities, but very rare indeed in North America. Through the write-up we are introduced to this unusual vehicle, the choice of battery packs, and to the charger that turned out to be defective. We’re then shown the common fault with these units, a familiar dry joint issue from poor quality lead-free solder, and taken through the repair.

We are so used to lithium-ion batteries in electric cars that it’s easy to forget there is still a small niche for lead-acid in transportation. Short-range vehicles like this one or many of the current crop of electric UTVs can do without the capacity and weight savings, and reap the benefit of the older technology being significantly cheaper. It would however be fascinating to see what the ZENN could achieve with a lithium-ion pack and the removal of that speed limiter.

If your curiosity is whetted by European electric microcars, take a look at our previous feature n the futuristic Hotzenblitz, from Germany.

Jumper Cables Block Trains

Standing Rock, North Dakota has been the site of a major protest this year against the Dakota Access Pipeline project. Protesters have sought to delay the pipeline’s progress by a wide variety of means, and both sides in the conflict have been accused of a variety of misdeeds.

An anonymous group supporting the protesters has released a video describing how they stop trains without the use of physical barricades. The video begins with police removing automobiles used to block the tracks and escorting trains through level crossings, showing how these traditional methods have been ineffective.

The video then goes on to outline what is described as a “sneaky” way of halting trains. Most railroads use what is known as a track circuit — a current run through the rails of the track detects when a train passes over it by the axles completing an electrical circuit between the two. By using a standard automotive jumper cable to connect the two rails together instead, the circuit is completed and falsely indicates to the railway signalling system that a train is present on the track in question. Due to the safety-critical nature of the railway, no trains can be run on the track until the short circuit is removed, else there is a great risk of collisions between trains on the network.

Intended as a practical guide, strategies to maximize disruption are outlined, such as hiding the cables under snow and painting them in black to evade detection as long as possible. Instructions on how to best make a solid connection to the rails are also shared.

It goes without saying that interfering with major infrastructure is risky, dangerous, and highly illegal. Protesters have already been arrested for physically blocking trains. Perpetrators of this method will surely be arrested if caught, and circumventing the technology could easily result in harsher charges associated with electronic security and safety systems. This is sabotage (deliberately obstructing) and undermines the validity of peaceful protest.

This shows how ingenuity is often spawned by turmoil and frustration. Reflect on human nature, and catch the video below the break.

Continue reading “Jumper Cables Block Trains”

Catching A Rogue Train With Data

If you have been a regular traveler on one of the world’s mass transit systems over the last few decades, you will have witnessed something of a technological revolution. Not necessarily in the trains themselves, though they have certainly changed, but in the signalling and system automation. Nineteenth and twentieth century human and electromechanical systems have been replaced by up-to-date computers, and in some cases the trains even operate autonomously without a driver. The position of every train is known exactly at all times, and with far less possibility for human error, the networks are both safer and more efficient.

As you might expect, the city-state of Singapore has a metro with every technological advance possible, recently built and with new equipment. It was thus rather unfortunate for the Singaporean metro operators that trains on their Circle Line started to experience disruption. Without warning, trains would lose their electronic signalling, and their safety systems would then apply the brakes and bring them to a halt. Engineers had laid the blame on electrical interference, but despite their best efforts no culprit could be found.

Eventually the problem found its way to the Singaporean government’s data team, and their story of how they identified the source of the interference makes for a fascinating read. It’s a minor departure from Hackaday’s usual  hardware and open source fare, but there is still plenty to be learned from their techniques.

They started with the raw train incident data, and working in a Jupyter notebook imported, cleaned, and consolidated it before producing analyses for time, location, and train IDs. None of these graphs showed any pointers, as the incidents happened regardless of location, time, or train.

They then plotted each train on a Marey chart, a graph in which the vertical axis represents time  and the horizontal axis represents stations along a line (Incidentally Étienne-Jules Marey’s Wikipedia entry is a fascinating read in itself). Since it represents the positions of multiple trains simultaneously they were able to see that the incidents happened when two trains were passing, hence their lack of correlation with location or time. The prospect of a rogue train as the source of the interference was raised, and analyzing video recordings from metro stations to spot the passing train’s number they were able to identify the unit in question. We hope that the repairs included a look at the susceptibility of the signalling system to interference as well as the faulty parts on one train.

We’ve been known to cover a few stories here with a railway flavor over the years. Mostly though they’ve been older ones, such as this film of a steam locomotive’s construction, or this tale of narrow gauge preservation.

[via Hacker News]

[Main image source: Singapore MRT Circle line trains image: 9V-SKA [CC BY 3.0], via Wikimedia Commons]

That NASA EM Drive Paper: An Expert Opinion

A week or two ago we featured a research paper from NASA scientists that reported a tiny but measurable thrust from an electromagnetic drive mounted on a torsion balance in a vacuum chamber. This was interesting news because electromagnetic drives do not eject mass in the way that a traditional rocket engine does, so any thrust they may produce would violate Newton’s Third Law. Either the Laws Of Physics are not as inviolate as we have been led to believe, or some other factor has evaded the attempts of the team to exclude or explain everything that might otherwise produce a force.

As you might imagine, opinion has entrenched itself on both sides of this issue. Those who believe that EM drives have allowed us to stumble upon some hitherto undiscovered branch of physics seized upon the fact that the NASA paper was peer-reviewed to support their case, while those who believe the mechanism through which the force is generated will eventually be explained by conventional means stuck to their guns. The rest of us who sit on the fence await further developments from either side with interest.

Over at Phys.org they have an interview from the University of Connecticut with [Brice Cassenti], a propulsion expert, which brings his specialist knowledge to the issue. He believes that eventually the results will be explained by conventional means, but explains why the paper made it through peer review and addresses some of the speculation about the device being tested in space. If you are firmly in one of the opposing camps the interview may not persuade you to change your mind, but it nevertheless makes for an interesting read.

If EM drives are of interest, you might find our overview from last year to be an illuminating read. Meanwhile our coverage of the NASA paper should give you some background to this story, and we’ve even had one entered in the Hackaday Prize.

Arm Thrusters, For Underwater Super Powers!

Most of us will have spent the idle hours of our youth while sitting in a room where a teacher was standing at the blackboard explaining iambic pentameter or the Diet of Wurms, daydreaming about the amazing exploits we could have created if only we had an Evil Lair stuffed with all the tools our fertile imaginations demanded. [James Bond] would have had nothing on us, our personal [Q] branch would have ensured we would have had the coolest gadgets on the planet.

As grown-ups we have some of the resources to make this a reality, yet somehow we’ve never made good on the dream. We spend our time creating IoT clocks or novelty electronic Christmas ornaments, and Mr. [Bond] still has a monopoly on the really cool stuff. Fortunately [PeterSripol] has struck a blow on our behalf, because he’s created a pair of arm-mounted underwater thrusters (YouTube, embedded below) that should leave [007] feeling definitely a bit [006.5].

The thrusters themselves came from a Kickstarter purchase that he left on the shelf for a while without an application. Then with only a short time before a trip to Hawaii, he set to work to do something with them, and the arm thrusters were the result.

He makes extensive use of components from the world of radio controlled models, with battery packs and speed controllers mounted in a waterproof food container at his belt, and a pair of handheld microswitch controllers. There is an Arduino which presumably produces the PWM signal, and we are treated to an in-depth look at his waterproofing efforts for the various connectors and switches. After a false start with battery polarity and a cracked impeller housing the device works, and we see it in use on a suitably tropical though not quite sun-kissed beach.

The thrusters appear to work very well, and we’d say they look a lot of fun to use. Sadly the exercise is brought to a halt when a control wire is sucked into a propeller, but we’re sure that’s only a minor setback. We’ve posted the video below the break, take a look.

Continue reading “Arm Thrusters, For Underwater Super Powers!”

Fail of the Week: Pinewood Derby Cheat Fails Two Ways

Would you use your tech prowess to cheat at the Pinewood Derby? When your kid brings home that minimalist kit and expects you to help engineer a car that can beat all the others in the gravity-powered race, the temptation is there. But luckily, there are some events that don’t include the kiddies and the need for parents to assume the proper moral posture. When the whole point of the Pinewood Derby is to cheat, then you pull out all the stops, and you might try building an electrodynamic suspension hoverboard car.

Fortunately for [ch00ftech], the team-building Derby sponsored by his employer is a little looser with the rules than the usual event. Loose enough perhaps to try a magnetically levitating car. The aluminum track provided a perfect surface to leverage Lenz’s Law. [ch00ftech] tried different arrangements of coils and drivers in an attempt to at least reduce the friction between car and track, if not outright levitate it. Sadly, time ran out and physics had others ideas, so [ch00ftech], intent on cheating by any means, tried spoofing the track timing system with a ridiculous front bumper of IR LEDs. But even that didn’t work in the end, and poor [ch00f]’s car wound up in sixth place.

So what could [ch00ftech] had done better? Was he on the right course with levitation? Or was spoofing the sensors likely to have worked with better optics? Or should he have resorted to jet propulsion or a propeller drive? How would you cheat at the Pinewood Derby?


2013-09-05-Hackaday-Fail-tips-tileFail of the Week is a Hackaday column which celebrates failure as a learning tool. Help keep the fun rolling by writing about your own failures and sending us a link to the story — or sending in links to fail write ups you find in your Internet travels.

Quick Arduino Hack Lets Tach-less Car Display Shift Points

A tachometer used to be an accessory added to the dash of only the sportiest of cars, but now they’re pretty much standard equipment on everything from sleek coupes to the family truckster. If your daily driver was born without a tach, fear not – a simple Arduino tachometer is well within your reach.

The tach-less vehicle in question is [deepsyx]’s Opel Astra, which from the video below seems to have the pep and manual transmission that would make a tach especially useful. Eschewing the traditional analog meter display or even a digital readout, [deepsyx] opted to indicate shift points with four LEDs mounted to a scrap of old credit card. The first LED lights at 4000 RPM, with subsequent LEDs coming on at each 500 RPM increase beyond that. At 5800 RPM, all the LEDs blink as a redline warning.  [Deepsyx] even provides a serial output of the smoothed RPM value, so logging of RPM data is a possible future enhancement.

The project is sensing engine speed using the coil trigger signal – a signal sent from the Engine Control Unit (ECU) which tells one of the ignition coilpacks to fire. The high voltage signal from the coilpack passes on to the spark plug, which ignites the air-fuel mixture in that cylinder. This is a good way to determine engine RPM without mechanical modifications to the car. Just make sure you modify the code for the correct number of cylinders in your vehicle.

Simple, cheap, effective – even if it is more of a shift point indicator than true tachometer, it gets the job done. But if you’re looking for a more traditional display and have a more recent vintage car, this sweeping LED tachometer might suit you more.

Continue reading “Quick Arduino Hack Lets Tach-less Car Display Shift Points”