66% or better

Piezoelectric Crystal Speaker for Clock Radio Is Alarmingly Easy to Make

cockadoodledooLet’s face it: most of us have trouble getting out of bed. Many times it’s because the alarm isn’t loud enough to rouse us from our viking dreams. [RimstarOrg]‘s homeowner’s association won’t let him keep a rooster in the backyard, so he fashioned a piezoelectric crystal speaker to pump up the volume.

[RimstarOrg]‘s speaker uses a Rochelle salt crystal strapped to a bean can diaphragm. In his demonstration, he begins by connecting an old clock radio directly to the crystal. This isn’t very loud at all, so he adds a doorbell transformer in reverse. This is louder, but it still won’t get [RimstarOrg] out of bed.

Enter the microwave oven transformer. Now it’s sufficiently loud, though it’s no fire bell alarm. He also demonstrates the speaker using a piezo igniter from one of those long barbecue lighters and a crystal radio earpiece. As always, the video is after the jump. [RimstarOrg] has a lot of relevant linkage in the summary so you can learn how to grow your own Rochelle crystals.

[Read more...]

Scooby-Doo Alarm Clock Repair

Scooby-Doo_alarm_clock_repair.Still001

This is more of a hack than a repair which is a good reason for me to feature my Scooby-Doo alarm clock repair. I started out trying to simply fix some broken hardware mounts that hold the display and button mechanism within the alarm clock that looks like the Scooby-Doo Mystery Van. During testing I noticed the display was very dim suggesting an unusual current load or other malfunction, plus the alarm was not functional.

One of the coolest features of the alarm was that it made a car honking noise when the alarm was activated. Unfortunately, it turned out that the chip-onboard which produced the honking sound was shorted internally causing some transistor overheating and the dim display. It was impossible to restore functionality of the custom chip-onboard, but lucky for me the data sheets for the LM8560 clock chip revealed that it could directly output a standard alarm beeping sound to a speaker. This required the PCB and some circuitry be configured differently.

In the end the clock’s current load came down to normal parameters, the display was once again bright and the alarm functioned using the standard beeping alarm sound that comes from the LM8560 clock chip. It is sad that the coolness factor of the alarm clock cannot be restored with the honking car sound alarm but my son is quite happy to have his favorite Scooby-Doo alarm clock functioning once again.

The circuit modifications may not have been the cleverest or the best solution, so if you have other suggestions please leave them in the comments below. You can watch the video of the circuit evaluation and repair modifications after the break.

[Read more...]

Fire bell wakes you for work by shaving years off your life

fire-bell-alarm-clock

If you suck at getting up in the morning [Jake Lee] has a solution that will make sure you don’t get fired from your job. Unfortunately it’s going to scare the life out of you — but maybe we’re just not hard enough sleepers to appreciate the value in an alarm clock that’s so horribly loud.

At first we wondered where he got the bell but it looks like you can buy one for about fifteen bucks. We’re not saying you should hide one of these under your best friend’s bed, but the cost of the bell does put it firmly in the worth-it-as-a-prank price range. [Jake] used rigid and flexible conduit to connect the bell to a power source, and the control panel shown on the left. He uses the LED backlight of the bedside alarm clock to drive the base of a transistor, switching a relay to trigger the bell. The big button on the grey box makes the wailing stop (seriously, cut your volume before you hit 0:30 in the clip below).

[Read more...]

Heathkit Clock Updated with a PIC32 and GPS

heathkit-clock

One of [Bob's] most treasured possessions is a Heathkit alarm clock he put together as a kid. Over the years he’s noticed a few problems with his clock. There isn’t a battery backup, so it resets when the power goes out. Setting the time and alarm is also a forward only affair – so stepping the clock back an hour for daylight savings time means holding down the buttons while the clock scrolls through 23 hours. [Bob] decided to modify his clock with a few modern parts. While the easiest method may have been to gut the clock, that wouldn’t preserve all those classic Heathkit parts. What [Bob] did in essence is to add a PIC32 co-processor to the system.

Like many clocks in the 70′s and 80′s, the Heathkit alarm clock was based upon the National Semiconductor MM5316 Digital Alarm Clock chip. The MM5316 operates at 8 – 22 volts, so it couldn’t directly interface with the 3.3V (5V tolerant)  PIC32 I/O pins. On PIC’s the input side, [Bob] used a couple of analog multiplexer chips. The PIC can scan the individual elements of the clock’s display. On the PIC’s output side, he used a couple of analog switches to control the ‘Fast’, ‘Slow’, and ‘Display Alarm/Time’ buttons.

[Read more...]

An Overly-Complicated Logic Chip Clock

Clock

When a normal alarm clock just won’t do, the only option is to build your own, entirely out of discrete logic chips. [jvok] built this alarm clock for last year’s 7400 Logic Competition. In a desire to go against the grain a little bit, [jvok] decided to use 4000-series logic chips. It was allowed under the rules, and the result is a wonderful example of what can be done without a microcontroller.

Most clock projects we’ve seen use a single button to increase each digit. [jvok] wanted to do something unique, so he is able to set his clock with a ‘mode’ button that allows him to independently set the hours, minutes, and seconds. He’s only ever seen this method of setting a clock’s time used with microcontroller-based projects, and translating even that simple code into pure circuitry is quite impressive.

This clock also includes an alarm function, set by a bunch of DIP switches in binary coded decimal. It’s a great piece of work, and deserving of much more attention than it received during the Open Logic Competition.

MSP430 alarm clock project

msp430-bedside-alarm-clock

[Markus] turn his breadboard LED matrix tinkering into an alarm clock which wakes him each morning.

Don’t be fooled by how clean his assembly work is. That’s not a fabbed PCB, it’s a hunk of green protoboard which a lot of point-to-point soldering on the back side. It’s driven by the MSP430 G2452 which is oriented vertically in this image. The two horizonal ICs are 595 shift registers which drive the LED modules.

We already mentioned the cleanliness of his assembly, but there’s one other really cool design element. On the back of the unit is what looks like a battery holder for two AA cells. He’s using just one Lithium Iron Phosphate battery (3.2V) which is in the upper of the two cavities. This let him cut the lower part of the holder at an angle to act as a stand for the clock.

Don’t miss the video which walks us through the user interface. It has what you’d expect from an alarm clock. But there is a really bright white LED which mimics a sunrise clock and it does more than just buzz one note when the thing goes off.

[Read more...]

Alarm clock uses Raspberry Pi to poll Google Calendar

rpi-google-calendar-alarm-clock

We know a lot of people love using their smart phone as a bedside alarm clock. The problem is that a mobile phone is mobile by nature and eventually you’ll forget to put it in the bedroom one night. That’s why we like the solution that [Devon Bray] has chosen. He set up his Raspberry Pi as an alarm clock that is set using Google Calendar.

The setup which he shows off in his video is quite simple. The Raspberry Pi is connected to a set of powered computer speakers. It plays a song whenever an appointment called “wake” comes up on his Google Calendar. This is accomplished by using the Google Data APIs Python Client Library (isn’t that a mouthful?).

This only scratches the surface of what is possible. With this in place you could easily add LEDs to the room for a sunrise alarm. But if you’d prefer a more bare-bones hardware side of things that’s possible too.

[Read more...]