Apple System 7… On Solaris?

While the Unix operating systems Solaris and HP-UX are still in active development, they’re not particularly popular anymore and are mostly relegated to some enterprise and data center environments They did enjoy a peak of popularity in the 90s during the “wild west” era of windowed operating systems, though. This was a time when there were more than two mass-market operating systems commercially available, with many companies fighting for market share. This led to a number of efforts to get software written for one operating system to run on others, whether that was simply porting software directly or using some compatibility layer. Surprisingly enough it was possible in this era to run an entire instance of Mac System 7 within either of these two Unix operating systems, and this was an officially supported piece of Apple software.

The software was called the Macintosh Application Environment (MAE), and was an effort by Apple to bring Macintosh System 7 applications to various Unix-based operating systems, including Solaris and HP-UX. This was a time before Apple’s OS was Unix-compliant, and MAE provided a compatibility layer that translated Macintosh system calls and application programming interfaces (APIs) into the equivalent Unix calls, allowing Mac software to function within the Unix environments. [Lunduke] outlines a lot of the features of this in his post, including some of the details the “scaffolding” allowing the 68k processor to be emulated efficiently on the hardware of the time, the contents of the user manual, and even the memory management and layout.

What’s really jarring to anyone only familiar with Apple’s modern “walled garden” approach is that this is an Apple-supported compatibility layer for another system. At the time, though, they weren’t the technology giant they are today and had to play by a different set of rules to stay viable. Quite the opposite, in fact: they almost went out of business in the mid-90s, so having their software run on as many machines as possible would have been a perk at the time. While this era did have major issues with cross-platform compatibility, there was some software that attempted to solve these problems that are still in active development today.

Thanks to [Stephen] for the tip!

Using Industrial CT To Examine A $129 USB Cable

What in the world could possibly justify charging $129 for a USB cable? And is such a cable any better than a $10 Amazon Basics cable?

To answer that question, [Jon Bruner] fired up an industrial CT scanner to look inside various cables (Nitter), with interesting results. It perhaps comes as little surprise that the premium cable is an Apple Thunderbolt 4 Pro USB-C cable, which sports 40 Gb/s transfer rates and can deliver 100 Watts of power to a device. And it turns out there’s a lot going on with this cable from an engineering and industrial design perspective. The connector shell has a very compact and extremely complex PCB assembly inside it, with a ton of SMD components and at least one BGA chip. The PCB itself is a marvel, with nine layers, a maze of blind and buried vias, and wiggle traces to balance propagation delays. The cable itself contains 20 wires, ten of which are shielded coax, and everything is firmly anchored to a stainless steel shell inside the plastic connector body.

By way of comparison, [Jon] also looked under the hood at more affordable alternatives. None were close to the same level of engineering as the Apple cable, ranging as they did from a tenth to a mere 1/32nd of the price. While none of the cables contained such a complex PCB, the Amazon Basics cable seemed the best of the bunch, with twelve wires, decent shielding, and a sturdy crimped strain relief. The other cables — well, when you’re buying a $3 cable, you get what you pay for. But does that make the Apple cable worth the expense? That’s for the buyer to decide, but at least now we know there’s something in there aside from Apple’s marketing hype.

We’ve seen these industrial CT scanners used by none other than [Ken Shirriff] and [Curious Marc] to reverse engineer Apollo-era artifacts. If you want a closer look at the instrument itself, check out the video below

Continue reading “Using Industrial CT To Examine A $129 USB Cable”

Beating Apple’s Secret Lid Angle Sensor Calibration With Custom Tool

Among the changes made by Apple to its laptops over the years, the transition from a Hall sensor-based sleep sensor to an angle sensor that determines when the lid is closed is a decidedly unpopular one. The reason for this is the need to calibrate this sensor after replacement, using a tool that Apple decided to keep for itself. That is, until recently [Stephan Steins] created a tool which he creatively called the ‘nerd.tool.1‘. This widget can perform this calibration procedure with the press of its two buttons, as demonstrated on [Louis Rossmann]’s YouTube channel.

This new angle sensor was first introduced in late 2019, with Apple’s official reason being an increased level of ‘precision’. As each sensor has to be calibrated correctly in order to measure the magnetic field and determine the associated lid angle, this means that third-party repair shops and determined MacBook owners have to transplant the chip containing the calibration data to a replacement sensor system. Until now, that is. Although the nerd.tool.1 is somewhat pricey at €169 ($179 USD), for a third-party MacBook repair shop this would seem to be a steal.

It is however unfortunate that Apple persists in such anti-repair methods, with recently [Hugh Jeffreys] also calling Apple out on this during a MacBook Pro M1/M2 teardown video. During this teardown [Hugh] came across this angle sensor issue by swapping parts between two otherwise identical MacBook Pros, indicating just how annoying this need to calibrate one tiny lid angle sensor is.

Continue reading “Beating Apple’s Secret Lid Angle Sensor Calibration With Custom Tool”

Normal Users Don’t Code On Their Mac, But Apple Keeps Trying

Most people use their computer to run pre-packaged programs: usually a web browser, games, or office applications. Whether the machine is a PC or a Mac, they don’t generally write their own software. For them, the computer is an appliance, and they do what their computer allows them to do.

It shouldn’t have to be that way, if only programming were easier. The Eclectic Light Company has a fascinating article looking at the various attempts that Apple has made to lure their users into creative programming.

Probably the most familiar of them all is AppleScript, with its origins in late 1993. Or maybe you’re thinking of Hypertalk, the scripting component of 1987’s Hypercard. That would go on to be a mainstay of mid-1990s multimedia software, but while it’s fallen by the wayside it’s AppleScript which still has support in the latest MacOS.

The biggest surprise for us lies in the forgotten products. 1989’s Prograph graphical language looks amazing. Was it simply before its time? In the modern era, Apple describes the reach of Shortcuts diplomatically: “its impact has so far been limited”.

Maybe the most forward-thinking line on programming from Apple came in 2007, even if it wasn’t recognized as such. The original iPhone didn’t have any third-party apps, and instead developers were supposed to write web apps to take advantage of the always-connected device. Would that be such a bad piece of advice to give a non-developer writing software for their Mac today?

A Quarter Century Of The IMac

Growing older as an engineer turns out to be a succession of moments in which technologies and devices which you somehow still imagine to be cool or exciting, reveal themselves in fact to be obsolete, indeed, old. Such a moment comes today, with the25th anniversary of the most iconic of 1990s computers, Apple’s iMac. The translucent all-in-one machine was and remains more than simply yet another shiny Mac, it’s probably the single most influential home computer ever. A bold statement to be sure, but take a look at the computer you’re reading this on, indeed at all your electronic devices here in 2023, before you dismiss it.

Any colour you want, as long as it's beige
Any colour you want, as long as it’s beige. Leon Brooks, Public domain.

Computers in the 1990s were beige and boring. Breathtakingly so, a festival of the generic. If you had a PC it came in the same beige box as every single other PC, the only thing breaking the monotony being one of those LED 7-segment fake-MHz displays. Apple computers took the beige and ran with it, their PowerMac range being merely a smoother-fronted version of all those beige-box PCs. This was the period following the departure of Steve Jobs during which the company famously lost its way, and the Bondi blue Jonny Ive-designed iMac was the signature product of his triumphant return.

That’s enough pretending to have drunk the Apple Kool-Aid for one article, so  why are we marking this anniversary? The answer lies not in the iMac’s hardware, though its 233MHz PowerPC G3 and ATI graphics driving a 15″ CRT were no slouch for the day, nor even in its forsaking of all their previous proprietary interfaces for USB. Instead it’s the design influence of this machine, as it ushered in a new era of technological devices whose ethos lay around how they might be used rather than in simply showering the interface with features. At the time the iMac spawned a brief fashion for translucent blue in everything from peripherals to steam irons, but in the quarter century since your devices have changed immeasurably in its wake. We still don’t like that weird round mouse though.

Header image: Rama, CC BY-SA 4.0.

This Week In Security: TunnelCrack, Mutant, And Not Discord

Up first is a clever attack against VPNs, using some clever DNS and routing tricks. The technique is known as TunnelCrack (PDF), and every VPN tested was vulnerable to one of the two attacks, on at least one supported platform.
Continue reading “This Week In Security: TunnelCrack, Mutant, And Not Discord”

Apple III Slows Down To Smell The Roses

The most collectible items in the realm of vintage computers often weren’t the most popular of their era. Quite the opposite, in fact. Generally the more desireable systems were market failures when they first launched, and are now sought out because of a newly-appreciated quirk or simply because the fact that they weren’t widely accepted means there’s fewer of them. One of the retro computers falling into this category is the Apple III, which had fundamental hardware issues upon launch leading to a large recall and its overall commercial failure. [Ted] is trying to bring one of these devices back to life, though, by slowing its clock speed down to a crawl.

The CPU in these machines was a Synertek 6502 running at 1.8 MHz. With a machine that wouldn’t boot, though, [Ted] replaced it with his own MCL65+, a purpose-built accelerator card based on the 600 MHz Teensy 4.1 microcontroller in order to debug the motherboard. The first problem was found in a ROM chip which prevented the computer loading anything from memory, but his solution wouldn’t work at the system’s higher clock speeds. To solve that problem [Ted] disabled the higher clock speed in hardware, restricting the system to 1 MHz and allowing it to finally boot.

So far there haven’t been any issues running the computer at the slower speed, and it also helps keep the computer cooler and hopefully running longer as well, since the system won’t get as hot or unstable. This isn’t [Ted]’s first retrocomputing rodeo, either. His MCL chips have been featured in plenty of other computers like this Apple II which can run at a much faster rate than the original hardware thanks to the help of the modern microcontroller.