Hack Corporate Overlords For Single Button Beer Delivery

[Brody Berson] is at it again, but this time he’s hacked the services floating in the aether around him to give him beer on demand. Finally the future we’ve been waiting for.

This hack is not as hacky as his first one, which, at the push of a button, could summon a bad driver straight to his house who would then give him pizza. The first one was done with a modified version of a button used to summon paper towels; because there’s nothing like needing paper towels RIGHT NOW, and then pushing a button to get them a few days later.

Apparently Amazon saw how practically no one was pushing the dish detergent button, but a lot of people were making scary mailboxes and magic pizza apps after ruthlessly scratching the branding off. So they shrugged and decided to sell the buttons as the newly branded (these get more hilarious when you don’t use the acronyms) Amazon, Amazon Web Services Internet of Things Button. Now your button can die along with the internet because Amazon is hosting your Raspberry Pi for a small fee, neat.

Anyway, [Brody] did some research on the best beer delivery services in his area, and went with one called Drizzly because they had a nice API. After integrating this system with Amazon’s, he can now push a button and minutes later, after subtracting some currencies from his account, a bad driver will show up and hand him beer.

Measuring Alcohol Content With Time of Flight Sensors

[Chris] is a homebrewer – the tasty kind – and wanted a way to track the rate of specific gravity against temperature. Tracking temperature is easy, all you need is a 1-wire temperature probe hooked up to the microcontroller of your choice. Logging the rate of fermentation isn’t as simple, but with a time of flight sensor, a hydrometer, and some pool toys, [Chris] kludged something together that works reasonably well.

Specific gravity, and thus fermentation, has been measured for centuries with hydrometers. Not wanting to complicate matters with electronic sensors, [Chris] built a floating cage for his hydrometer out of a clear tube, a kick board, and a few bits of styrofoam. By placing a Sparkfun time of flight sensor at the top of the tube, and lowering the hydrometer into his fermentation bucket, [Chris] can measure the height of the hydrometer above the level of the liquid in his fermentation bucket.

Both the temperature and specific gravity are logged to a Raspberry Pi, and after combing through this data [Chris] can see a big ‘bump’ in the specific gravity due to a mass of foam, tapering down to the desired values after a day or so.

Hacklet 35 – BeagleBone Projects

The Raspberry Pi 2 is just barely a month old, and now that vintage console emulation on this new hardware has been nailed down, it’s just about time for everyone to do real work. You know, recompiling stuff to take advantage of the new CPU, figuring out how to get Android working on the Pi, and all that good stuff that makes the Pi useful.

It will come as no surprise to our regular readers that there’s another board out there that’s just as good in most cases, and in some ways better than the Pi 2. It’s the BeagleBone Black, and for this edition of the Hacklet, we’re focusing on all the cool BeagleBone projects on Hackaday.io.

lcdSo you have a credit card sized Linux computer and a small, old LCD panel. If it doesn’t have HDMI, VGA or composite input, there’s probably no way of getting this display working, right? Nope. Not when you can make an LCD cape for $10.

[Dennis] had an old digital picture frame from a while back, and decided his BeagleBone needed a display. A few bits of wire and some FPC connectors, and [Dennis] has a custom display for his ‘Bone. It’s better than waiting for that DSI display…

bed[THX1082] is making a bed for his son. This isn’t your usual race car bed, or even a very cool locomotive bed. No, this is a spaceship bed. Is your bed a space ship? No, I didn’t think so.

Most of the work with plywood, MDF, paint, and glue is done, which means the best feature of this bed – a BeagleBone Black with an LCD, buttons, a TV, and some 3D printed parts – is what [THX] is working on right now. He’s even forking a multiplayer networked starship simulator to run in the bed. Is your bed a starship simulator?

beer

Beer. [Deric] has been working on a multi-step fermentation controller using the BeagleBone Black. For good beer you need to control temperatures and time, lest you end up with some terrible swill that I’d probably still drink.

This project controls every aspect of fermentation, from encouraging yeast growth, metabolization of sugars, and flocculation. The plan is to use two circuits – one for heating and one for cooling – and a pair of temperature sensors to ensure the beer is fermenting correctly.


If you’re looking for more BeagleBone Projects, there’s an entire list of them over on Hackaday.io with GLaDOs Glasses, Flight Computers, and Computer Vision.

Brewing Beer with a Sous Vide Cooker

[Ken] found an interesting use for his sous vide cooker. He’s been using it to help him with his home brewing. It’s unlikely that the manufacturer ever intended it to be used in this manner, but as hackers we don’t really care about warranties.

Beer brewing is as much of an art as it is a science. There are a lot of variables that go into the process, and tweaking any one of them can result in your beer tasting different. There is one process during brewing that is called mashing. Mashing is when you soak malted grains in hot water to pull out the sugar. The amount of sugar that gets extracted is very dependent on how long the grains are soaked, and the temperature of the water. If you want your beer to taste a certain way, then you want to ensure that the water stays at constant, repeatable temperature.

As a home brewer, [Ken] has been using his stove top to heat the water. This gets the water warm, but in order to keep the temperature consistent, he has to constantly monitor the temperature and adjust the knob accordingly. Who wants to sit around and do that all day? He needed something to control the temperature automatically. Enter the sous vide cooker.

Sous vide is a method of cooking in which food is placed into an airtight bag and then submerged in a water bath with very strict temperature control. The process takes a long time to cook the food, but the result is supposed to be meat that is cooked perfectly even while also retaining all of the moisture and juices. [Ken] figured he might be able to use a sous vide cooker to control the temperature of the mash instead of a water bath.

His experiment worked wonderfully. He used the stove top to help get the mash up to the close temperature, then the sous vide cooker was used to fine tune things from there. [Ken] says he was able to achieve 75% efficiency with his mash, which is exactly what he was going for. Continue reading “Brewing Beer with a Sous Vide Cooker”

Quadcopter Beer Delivery System

One of the major design challenges when it comes to building an efficient quadcopter is weight. The idea here is that the more you can trim down the weight of the frame, motors, and circuitry, the longer the batteries will last. Or, in [dalbyman]’s case, the more beer it can carry.

[Dalbyman]’s housemate built the actual quadcopter, but then [dalbyman] got a little inebriated and decided that, while the quadcopter was exciting on its own, it would be even better with this modification. The actual device is a modified Pringles can with two servo motors on the bottom with arms that hold the beer. A parachute is attached to the beverage can and the assembly is loaded in. With a simple press of a button, the servos turn the arms and the beer falls out of the tube. Hopefully the parachute deploys and gently (and accurately) floats the beer to the thirsty person on the ground!

This project is a simple step that goes a long way towards a beer delivery system even Amazon could be proud of, and also shows off the capabilities of quadcopters in general. Perhaps the next step could be to automate the beer delivery system!

 

Locking A Beer With A 3D Printer

Have a nice, refreshing IPA sitting in the fridge along with a ton of other beers that have ‘Light’ or ‘Ice’ in their name? Obviously one variety is for guests and the other is for hosts, but how do you make sure the drunkards at your house tell the difference? A beer bottle lock, of course.

Because all beer bottles are pretty much a standard size, [Jon-A-Tron] was able to create a small 3D printed device that fit over the bottle cap. The two pieces are held together with a 4-40 hex screw, and the actual lock comes from a six-pack of luggage padlocks found at the hardware store.

It’s a great device to keep the slackers away from the good stuff, and also adds a neat challenge to anyone that’s cool enough to know basic lock picking. Of course, anyone with a TSA master key can also open the beer lock, but if you’re hosting a party with guest who frequently carry master keys around with them, you’re probably having too good of a time to care.

Goldilocks Climate Box Keeps Lager Fermentation Environment Just Right

September was warmish in many places around the world including [Ole]’s native Denmark. But that did not stop him from brewing lager flavored with plums from his own garden, and neither did his indifference to lagers in general.

Lager fermentation requires a consistent, low temperature. While many homebrewers might modify an electric refrigerator, [Ole] wasn’t interested in the cost of running a second one just for brewing beer. Instead, he built a climate box to work with the cool temperature in his garage. Starting with scrap wood from other projects, he lined the walls with polystyrene and put a layer of wood on the floor to help support the fermentation bucket.

Maintaining a consistent temperature in the box called for both heating and cooling. He pulled the Peltier from a 12V cooler meant to run off a car’s cigarette lighter, and used a spare ceramic heater that was lying around in case his primary reptile warmer went on the fritz.

An Arduino and a custom shield drive separate PID controllers for the Peltier and the heater. The shield has a temperature probe, and he extended the USB outside the climate box so the PIDs can be adjusted without disturbing the inside temperature. The schematic, board file, and code are all available in a zip you can get from his post.

The Peltier couldn’t quite compensate for the overly warm weather and the heat caused by the fermentation, but it was stable enough to produce a nice, plum-flavored lager he has dubbed Lektor Blom­mes malt­bol­che, which is a triple Danish pun he explains in the write-up.