Tiny Tunes On An ATtiny13

When you take a microcontroller class in university, one of the early labs they have you drudge through on your way to, promised, mastery over all things embedded, is a tiny music generator.

It’s a more challenging lab than one would expect. It takes understanding the clock of the microcontroller and its sometimes temperamental nature. It takes a clear mental picture of interrupts, and is likely one of the first experiences a burgeoning designer will have worrying about the execution time of one of their loops. Also tables, data structures, and more. It even requires them to go out of their comfort zone a learn about an unrelated field, a challenge often faced in practicing engineering.

Luckily [Łukasz Podkalicki] has done a great job of documenting the adventure. He’s got everything from the schematic and code to the PWM traces on the oscilloscope.

It’s also worth mentioning that he’s got a few other really nice tutorials for the ATtiny13 microcontroller on his blog. A tiny party light generator and a IR receiver among them.

Trash-heap Water Wheel Recharges iPhone in the Woods

We’ve all been there – hiking in the woods with a dead phone battery. No GPS, no way to Tweet that selfie from some hill with a great vista. It’s a disaster! But not if you have access to a little trailside junk and have the ingenuity to build this field-expedient water wheel generator to recharge your phone.

OK, it’s a stretch to imagine finding all the things needed for [Thomas Kim]’s hack. We’re only guessing at the BOM – the video below has little commentary, so what you see is what you get – but it looks like a garbage can at the trailhead might at least yield the materials needed to build the turbine. Water bottle bottoms and a couple of plastic picnic plates form the Pelton-like impeller, the frame looks like an old drying rack, and the axle appears to be a campfire skewer. But you might have a hard time finding the electrical side of the build, which consists of a stepper motor, a rectifier, and an electrolytic cap. Then again, you could get lucky and find a cast-off printer by the side of the road. No matter how he got the materials, it’s pretty cool to see an iPhone recharging next to a babbling brook in the woods.

Looking for a little more oomph from your trash-heap hydroelectric turbine? Maybe you need to look at this washing machine power plant build.

Continue reading “Trash-heap Water Wheel Recharges iPhone in the Woods”

Physics You’ve Never Heard Of Provides Power From Waves

“In the future, we’ll be generating a significant fraction of our electricity from harnessing the waves!” People have been saying this for decades, and wave-generated electricity is not a significant fraction of an ant’s poop. It’d be fantastic if this could change.

If you believe the owners of Oscilla Power, the main failing of traditional wave-power generators is that they’ve got too many moving parts. Literally. Metal mechanical parts and their seals and so on are beaten down by sun and salt and surf over time, so it’s expensive to maintain most of the generator designs, and they’re just not worth it.

Oscilla’s generator, on the other hand, has basically no moving parts because it’s based on magnetostriction, or rather on inverse magnetostriction, the Villari effect. Which brings us to the physics.

Magnetostriction_by_ZureksMagnetostriction is the property that magnetic materials can shrink or expand just a little bit when put in a magnetic field. The Villari effect (which sounds much cooler than “inverse magnetostriction”) is the opposite: magnetic materials get more or less magnetic when they’re squeezed.

mpv-shot0001So to make a generator, you put two permanent magnets on either end, and wind coils around magnetostrictive metal bars that are inside the field of the permanent magnets. Squeeze and stretch the bars repeatedly and the net magnetic field inside the coils changes, and you’re generating electricity. Who knew?

Right now, according to The Economist Magazine’s writeup on Oscilla, the price per watt isn’t quite competitive with other renewable energy sources, but it’s looking close. With some more research, maybe we’ll be getting some of our renewable energy from squeezing ferrous bars.

And while we’re on the topic, check out this recent article on magnets, and how they work.

A Pedal Powered Cinema

When the apocalypse hits and your power goes out, how are you going to keep yourself entertained? If you are lucky enough to be friends with [stopsendingmejunk], you can just hop on his pedal powered cinema and watch whatever movies you have stored on digital media.

This unit is built around an ordinary bicycle. A friction drive is used to generate the electricity via pedal power. In order to accomplish this, a custom steel stand was fabricated together in order to lift the rear wheel off the ground. A 24V 200W motor is used as the generator. [stopsendingmejunk] manufactured a custom spindle for the motor shaft. The spindle is made from a skateboard wheel. The motor is mounted in such a way that it can be lowered to rub the skateboard wheel against the bicycle wheel. This way when the rear bicycle wheel spins, it also rotates the motor. The motor can be lifted out of the way when cruising around if desired.

The power generated from the motor first runs through a regulator. This takes the variable voltage from the generator and smooths it out to a nice even power signal. This regulated power then charges two Goal Zero Sherpa 100 lithium batteries. The batteries allow for a buffer to allow the movie to continue playing while changing riders. The batteries then power the Optomo 750 projector as well as a set of speakers.

Bike-Powered Everything

It’s hard to argue that bicycles aren’t super handy. They get you from point A to B in a jiffy with little effort. Since these machines are so simple and convenient, why not use them for things other than transportation? Well, [Job] set out to do just that.

[Job’s] starts with a standard single speed bike and adds a few parts. First, a stand is installed to the back axle. When in the down position, it lifts the rear wheel off of the ground and provides support so the bike does not tip over. When flipped up into the ‘up’ position the stand creates a rack for holding goods and the bike can be pedaled around in a normal manner.

dualpurposebike-midNext, a jack shaft made from a bike bottom bracket and crank is installed up front in between the top tube and down tube of the frame. On one side of the jack shaft is a sprocket and the other side is a large pulley. When converting to what [Job] calls ‘power production mode’, the chain going to the rear wheel is removed from the crank sprocket and replaced with a chain connected to the jack shaft.

With the rear stand down supporting the bike and the pedals now powering the jack shaft and large pulley, it is time to connect the bike to any sort of machine. A belt is slung around the pulley and connected to a matching pulley on a power-hungry machine. This dual-purpose bike has powered a rice thresher, peanut sheller, water pump, table saw and even a wood lathe!

[Job] set out to create a simple and inexpensive way to make a bike even more useful than just riding around town. We think he did just that. For more bike-powered stuff, check out this generator.

Retrotechtacular: Basic Telephony in the Field

Here is a great introduction to a practical application of electromagnetic theory—the field telephone. It’s a training film from 1961 that covers the sound-powered, local battery, and common battery systems along with the six basic components they use: generators, ringers, transmitters, receivers, induction coils, and capacitors.

Clear illustrations and smart narration are the hallmarks of these Army training films, and this one begins with a great explanation of generator theory. The phone’s ringer uses electromagnetic attraction and repulsion to do the mechanical work of striking the bells. Similarly, the sound waves generated by a caller’s speech move an armature to create an alternating electrical current that is transmitted and converted back to sound waves on the receiving end.

In the local battery system, the battery pushes pulsating DC to carry the voice transmission. An induction coil increases the capabilities of this system, but capacitors are required to filter out the frequencies that would overload the receiver, passing only the higher speech frequencies.

In order for several stations to communicate, the use of a switchboard is required to patch the calls through. There are many advantages of a common battery system with regard to call switching: no local battery is necessary, nor is a generator needed at each station. Calls are easier to place, and communication is much faster.

Continue reading “Retrotechtacular: Basic Telephony in the Field”

3D Printed Wimshurst Machine

Steampunk extraordinaire [Jake von Slatt] has released his latest creation. This time he’s built a Wimshurst machine from mostly 3D printed parts. The Wimshurst machine is an electrostatic generator and was originally invented in the late 1800’s by James Wimshurst. It uses two counter-rotating disks to generate an electrostatic charge which is then stored in two Leyden jars. These jars are also connected to a spark gap. When the voltage raises high enough, the jars can discharge all at once by flashing a spark across the gap.

[Jake’s] machine has a sort of Gothic theme to it. He designed the parts using Autodesk’s 123D Design. They were initially printed in PLA. Skate bearings were used in the center of the disks to ensure a smooth rotation. The axle was made from the fiberglass shaft of a driveway reflector. The vertical supports were attached the base with machine screws.

The Leyden jars were made from sections of clear plastic tube. The caps for the jars were 3D printed and are designed to accept a short length of threaded 1/8″ pipe. Copper wire was used for the interior contacts and are held in place with electrical tape. The metal sectors on each disk were made from pieces of cut aluminum tape.

You may be wondering how this machine works if it’s almost entirely made out of plastic. [Jake] actually painted most of the parts with a carbon paint. This makes them electrically conductive and he can then use the parts to complete electrical circuits. Unfortunately he found this to be rather ineffective. The machine does work, but it only produces sparks up to 1/2″ in length. For comparison, his other machine is capable of 6″ sparks using similar sized Leyden jars.

[Jake] actually tried rebuilding this project using ABS, thinking that the PLA may have been collecting moisture from his breath, but the result is still only 1/2″ sparks. He suspects that the bumpy surface of the plastic parts may be causing the charge to slowly leak away, preventing a nice build up. He’s released all of his designs on Thingiverse in case any other hackers want to give it a whirl.