Chronio DIY Watch: Slick and Low Power

[Max K] has been testing the battery life of his self-designed watch under real-world conditions. Six months later, the nominally 3 V, 160 mAh CR2025 cell is reading 2.85 V, so the end is near, but that’s quite a feat for a home-engineered smart watch.

We’ve tipped our hats to the Chronio before in this Hacklet, but now that the code is available, as well as the sweet 3D-printed case files, it’s time to make your own. Why? It looks sweet, it plays a limited version of Flappy Bird (embedded below), and six month’s on a button cell is a pretty great accomplishment, considering that it’s driving a 96×96 pixel LCD display.

The Chronio is more than inspired by the Pebble watch — he based his 3D model directly on theirs — so that’s bound to draw comparisons. The Pebble is color, and has Bluetooth and everything else under the sun. But after a few weeks away from a power socket, ask a Pebble wearer what time it is. Bazinga!

Continue reading “Chronio DIY Watch: Slick and Low Power”

Keeping Time with a Spring Powered Integrated Circuit

Watch aficionados have a certain lust for mechanical watches. These old school designs rely on a spring that’s wound up to store energy. The movement, an intricate set of gears and other mechanical bits, ensures that the hands on the watch face rotates at the right speed. They can be considered major feats of mechanical engineering, with hundreds of pieces in an enclosure that fits on the wrist. They’re quite cheap, and you have to pay a lot for accuracy.

Quartz watches are what you usually see nowadays. They use a quartz crystal oscillator, usually running at 32.768 kHz. These watches are powered by batteries, and beat out their mechanical counterparts for accuracy. They’re also extremely cheap.

Back in 1977, a watchmaker at Seiko set off to make a mechanical watch regulated by a quartz crystal. This watch would be the best of both words. It did not become a reality until 1997, when Seiko launched the Spring Drive Movement.

A Blog To Watch goes through the design and history of the Spring Drive movement. Essentially, it uses a super low power integrated circuit, which consumes only 25 nanowatts. This IC receives power from the wound up spring, and controls an electromagnetic brake which allows the movement to be timed precisely. The writeup gives a full explanation of how the watch works, then goes through the 30 year progression from idea to product.

Once you’ve wrapped your head around that particularly awesome piece of engineering, you might want to jump into the details that make those quartz crystal resonators so useful.

[Thanks to John K. for the tip!]

Building A LoRa PHY With SDR

The Internet of Things is terrible when it’s your toaster. The real fun happens when you have hundreds or thousands of sensors sending data back to a base station every day. That requires low power, and that means LPWAN, the Low Power Wide Area Network.

There are a lot of options for LPWAN, but few are a perfect fit. LoRa is one of the rare exceptions, offering years of operation on a single AA cell, and range measured in miles. Layers two and three of LoRa are available as public documentation, but until now layer one has been patented and proprietary. At the GNU Radio Conference, [Matt Knight] gave a talk on reverse engineering the LoRa PHY with a software defined radio. Now, LoRa is open to everyone, and anyone can decode the chirps transmitted from these tiny, low power devices.

Continue reading “Building A LoRa PHY With SDR”

ESP8266 Lullaby

The ESP8266 is certainly a versatile device. It does, however, draw a bit of power. That isn’t really surprising, though, since you would expect beaming out WiFi signals to take a little juice. The trick is to not keep the device on all the time and spend the rest of the time in deep sleep mode. [Marco Schwartz] has a good tutorial about how to use this mode to run for “years” on a battery.

[Marco] notes that even using a 2500 mAh LiPo battery, he only gets about 30 hours of operation without sleep. By putting the chip in sleep mode, the current consumption drops from about 88 mA to just over 8 mA. That’s still high, though, because the board has a power LED! By removing a jumper or cutting a trace (depending on the board), you can drop the current draw to about 0.08 mA (80 uA) when it’s not doing anything.

Continue reading “ESP8266 Lullaby”

Add Data To Your Shipping Suspicions With This Power-Sipping Datalogger

One only has to ship one or two things via a container, receiving them strangely damaged on the other end, before you start to wonder about your shipper. Did they open this box and sort of stomp around a bit? Did I perhaps accidentally contract a submarine instead of a boat? Did they take a detour past the sun? How could this possibly have melted?

[Jesus Echavarria]‘s friend had similar fears and suspicions about a box he is going to have shipped from Spain to China. So [Jesus] got to work and built this nice datalogger to discover the truth. Since the logger might have to go for a couple of months, it’s an exercise in low power design.

The core of the build is a humble PIC18. Its job is to take the information from an ambient light, temperature, and humidity sensor suite and dump it all to an SD card. Aside from the RTC, this is all powered from a generic LiPo power cell. The first iteration can run for 10 days on one charge, and that’s without any of the low power features of the microcontroller enabled. It should be able to go for much longer once it can put itself to sleep for a period.

It’s all housed in a 3D printed case with some magnets to stick it to shell of the shipping container. Considering the surprisingly astronomical price of commercial dataloggers, it’s a nice build!

Hackaday Prize Entry: Cheap Visible Light Communication

[Jovan] is very excited about the possibilities presented by Visible Light Communication, or VLC. It’s exciting and new. His opening paragraphs is filled with so many networking acronyms that VLC could be used for, our browser search history now looks like we’re trying to learn english without any vowels.

In lots of ways he has good reason to be excited. We all know that IR can communicate quite a bit, but when you’re clever about frequency and color and throw in some polarizers with a mix of clever algorithms for good measure you can get some very high bandwidth communication with anything in line of site. You can do it for low power, and best of all, there are no pesky regulations to stand in your way.

He wants to build a system that could be used for a PAN (Personal Area Network). To do this he’ll have to figure out a way to build the system inexpensively and using less than a watt of power. The project page is full of interesting experiments and quite a few thesis on the subject of LEDs.

For example, he’s done work on how LEDs respond to polarization. He’s tested how fast an LED can actually turn on and off while still being able to detect the change. He’s also done a lot of work characterizing the kind of light that an LED emits. We don’t know if he’ll succeed yet, but we like the interesting work he’s doing to get there.

Compact ePaper Business Card

Is your business card flashy? Is it useful in a pinch? Do they cost $32 each and come with an ePaper display? No? Well, then feast your eyes on this over-the-top business card with an ePaper display by [Paul Schow]. Looking to keep busy and challenge himself with a low-power circuit in a small package, he set about making a business card that can be updated every couple of months instead of buying a new stack whenever he updated his information.

Having worked with ePaper before, it seemed to be the go-to option for [Schow] in fulfilling the ultra-low power criteria of his project — eventually deciding on a 2″ display. Also looking to execute this project at speed, he designed the board in KiCad over a few hours after cutting it down to simply the power control, the 40-pin connector and a handful of resistors and capacitors. In this case, haste made waste in the shape of the incorrect orientation of the 40-pin connector and a few other mistakes besides. Version 2.0, however, came together as a perfect proof-of-concept, while 3.0 looks sleek and professional.

Continue reading “Compact ePaper Business Card”