Muscle Wire Pen Dances to Duke Nukem

[serdef] is clearly just having a little bit of fun here. One never needs a whiteboard pen that’s syncronized by MIDI to dance along with the theme from Duke Nukem.

But if you had all of the parts on hand (a highly liquid MIDI-driven relay board that connects straight up to a soundcard, some muscle wire, tape, and a whiteboard pen, naturally) we’re pretty sure that you would. You can watch the dancing pen in a video below the break.

The project is really about documenting the properties of [serdef]’s muscle wire, and he found that it doesn’t really contract enough with a short piece to get the desired effect. So he added more wire. We’ve always meant to get around to playing with muscle wire, and we were surprised by how quickly it reacted to changing the voltage in [serdef]’s second video.

Now the dancing pen isn’t the most sophisticated muscle wire project we’ve ever seen. And that award also doesn’t go to this Nitinol-powered inchworm. Did you know that there’s muscle wire inside Microsoft’s Surface?

Continue reading “Muscle Wire Pen Dances to Duke Nukem”

Polyphonic FM Synthesizer uses ARM

There seems to be a direct correlation between musicians and people who can program. Even programmers who don’t play an instrument often have a profound appreciation of music and so we see quite a few musical projects pop up. [Ihsan Kehribar’s] latest project is a good example. He married an STM32F031 ARM development board, an audio codec, and a simple op amp filter to make a playable MIDI instrument. Of course, it is hard to appreciate a music project from a picture, but if you want to listen to the results, there’s always Soundcloud.

He’d started the project using an 8-bit micro, but ran into some limitations. He switched to an STM32F031, which is a low-end ARM Cortex M0 chip. [Ihsan] mentions that he could have used the DSP instructions built into larger ARM chips, but he wanted to keep the project done on minimal hardware. The audio CODEC chip is from Cirrus Logic (a WM8524), and it produces two output channels at 192 kHz. As an unexpected benefit, the CODEC uses a charge pump to generate a negative voltage (much like a MAX232 does) and [Ihsan] was able to tap that voltage to provide the op-amps in the audio filter with a negative supply rail.

Continue reading “Polyphonic FM Synthesizer uses ARM”

Start Gaming Early with IKEA High (Score) Chair

If you want your kid to be really great at something, you have to start them out early. [Phil Tucker] must want his kid to be a video gamer pretty badly. [Phil’s] build starts with a $20 IKEA high chair. He likes these chairs because at that price point, tearing into them isn’t a big risk. What’s more is you can buy extra trays so you can use it as a modular project with different trays serving different purposes.

The chair has two joysticks and two buttons, looking suspiciously like a video game controller. The current incarnation (see video, below) uses an Arduino Uno to trigger an Akai MPC1000 synthesizer via the MIDI interface.

Continue reading “Start Gaming Early with IKEA High (Score) Chair”

Novation Launchpad MIDI Controller Moves Toward Open Source

The Novation Launchpad is a MIDI controller, most commonly used with the Ableton Live digital audio workstation. It’s an eight by eight grid of buttons with RGB LED backlights that sends MIDI commands to your PC over USB. It’s often used to trigger clips, which is demonstrated by the artist Madeon in this video.

The Launchpad is useful as a MIDI input device, but that’s about all it used to do. But now, Novation has released an open source API for the Novation Pro. This makes it possible to write your own code to run on the controller, which can be flashed using a USB bootloader. An API gives you access to the hardware, and example code is provided.

[Jason Hotchkiss], who gave us the tip on this, has been hacking around with the API. The Launchpad Pro has a good old 5 pin MIDI output, which can be connected directly to a synth. [Jason]’s custom firmware uses the Launchpad Pro as a standalone MIDI sequencer. You can check out a video of this after the break.

Unfortunately, Novation didn’t open source the factory firmware. However, this open API is a welcome change to the usual closed-source nature of audio devices.

Continue reading “Novation Launchpad MIDI Controller Moves Toward Open Source”

Zynq and the OPL3 Music Synthesizer

We’re big fans of the Zynq, which is an answer to the question: what do you get when you cross a big ARM processor with a big FPGA? So it isn’t surprising that [GregTaylor’s] project to emulate the OPL3 FM Synthesis chip in an FPGA using the Zynq caught our eye.

The OPL3 (also known as the Yamaha YMF262) was a very common MIDI chip on older PC sound cards. If you had a Sound Blaster Pro or 16 board, you had an OPL3 chip in your PC. The OPL3 was responsible for a lot of the music you associate with vintage video games like Doom. [Greg] not only duplicated the chip’s functions, but also ported imfplay from DOS to run on the Zynq’s ARM processors so he could reproduce those old video game sounds.

The Zybo board that [Greg] uses includes an Analog Devices SSM2603 audio codec with dual 24-bit DACs and 256X oversampling. However, the interface to the codec is isolated in the code, so it ought to be possible to port the design to other hardware without much trouble.

To better match the original device’s sampling rate with the faster CODEC, this design runs at a slightly slower frequency than the OPL3, but thanks to the efficient FPGA logic, the new device can easily keep up with the 49.7 kHz sample rate.

Using an FPGA to emulate an OPL3 might seem to be overkill, but we’ve seen worse. If you prefer to do your synthesis old school, you can probably get a bulk price on 555 chips.

Continue reading “Zynq and the OPL3 Music Synthesizer”

Forgotten Rock Band Drum Controller as a MIDI Instrument

Happen to have an old Rock Band drum controller collecting dust in your living room? If you also have a spare Arduino and don’t mind parting with that plastic college memento then you’ve got the bulk of what could potentially be your new percussive MIDI instrument. In his project video [Evan Kale] outlines the steps necessary to turn that unloved plastic into a capable instrument for recording.

The whole process as outlined by [Evan] in under seven minutes. This looks like a great weekend endeavor for those of us just starting out with MIDI. After cracking the back of the Guitar Hero drum kit controller open, the main board within is easily replaced with a standard sized Ardunio (which matches the present mounting holes exactly). About 4:50 into the video [Evan] explains how to add a basic perf-board shield over the Arduino which connects the piezo sensors in each of the drum pads to the analog pins of the micro-controller. The MIDI jack that comes built into the back of the kit can also be reused as MIDI out when wired to the Arduino’s serial out pin. By adjusting [Evan’s] example code you can dial in the instrument’s feedback to match the intensity of each hit.

The video with all of the details is after the jump. Or you can check out a MIDI hack that goes the other way and uses a drum kit as a Guitar Hero or Rock Band controller instead

Continue reading “Forgotten Rock Band Drum Controller as a MIDI Instrument”