The Most Flexible Synthesizer is DIY, Raspberry Pi

[Ivan Franco] sent us this great synthesizer project that he’s working on. Or maybe it’s more like a synthesizer meta-project: a synthesizer construction set. You see, what Pryth has is a Raspberry Pi inside that’s running a custom distribution that includes SuperCollider to generate the sound, OSC for the communication layer, and a Teensy with up to 80 (!) multiplexed analog inputs that you’ll connect up to whatever hardware you desire.

Continue reading “The Most Flexible Synthesizer is DIY, Raspberry Pi”

Not Just Another Alarm Clock

Even though [Stefan] sent in this link with the heading “Another Sunrise Alarm Clock“, it’s anything but plain. Sure, from the outside it looks like a simple and refined design, but the story of getting there is hardly straightforward.

chordegg2015tonegenTake that nice-looking luminous dial. [Stefan] made it himself, using the same techniques that he’s used for making his own watch faces. (Amazingly, he prints them out on a color ink-jet.) This is a sunrise wake-up clock, but if the bright LEDs don’t wake him up, there’s also a vintage DIY synthesizer project stuffed in the box in place of a cheap piezo buzzer. Even the wooden case shows attention to detail — it has nice edging done on a router table.

So yeah, we’ve all seen clocks before. But this one is very personal, melding together a few of [Stefan]’s hobbies into one useful, and good-looking, device.

The Music of a Sunset

What would you do if you suddenly went blind and could never again see the sun set? How would you again experience this often breathtaking phenomenon? One answer is music, orchestrated by the sun and the Weather Warlock.

Built by the musician [Quintron] (builder and inventor of insane electronic instruments), the Weather Warlock is an analog synthesizer controlled by — you guessed it — the weather. It translates temperature, moisture, wind and sunlight into tones and harmonics with an E major root chord. UV, light, moisture, and temperature sensors combined with an anemometer set up outside feed the weather data to a synthesizer that has [Quintron] dialing knobs and toggling switches. The Weather Warlock steams 24/7 to the website weatherfortheblind.org so that the visually impaired are able to tune in and experience the joy of sunrise and sunset through music. Continue reading “The Music of a Sunset”

Modular Drum Machine Creates Random Rhythms

Don’t worry, the rhythms themselves aren’t random! That would hardly make for a useful drum machine. [kbob]’s creation does have the ability to randomly generate functional rhythms, though, and it’s all done on a breadboard.

The core of this tiny drum machine is two Teensy dev boards. One is an FM synth tuned to sound like drums, and the other is a random rhythm generator with several controls. The algorithms are from Mutable Instruments’ open source Eurorack modules. The entire thing fits on a breadboard with JIGMOD modules for the user interface. The machine runs on lithium batteries in the form of USB cell phone chargers. The battery holders were designed in Fusion 360 and 3D printed.

The function of the drum machine is pretty interesting as well. There are a set of triggers tied to the buttons on the machine. When a button is pressed, the drum machine plays that sound at the appropriate time, ensuring there are no offbeat beats. The potentiometers are polled once every millisecond and the program updates the output as required. There’s also a “grid” of rhythms that are controlled with two other knobs (one to map the X coordinate and the other for the Y) and a “chaos” button which adds an element of randomness to this mapping.

The modular nature of this project would make this a great instrument to add to one’s musical repertoire.It’s easily customizable, and could fit in with any of a number of other synthesizer instruments.

Continue reading “Modular Drum Machine Creates Random Rhythms”

Autonomous Musical Soundscapes from 42 Fans and 7 Lasers

[dmitry] writes in to let us know about a new project that combines lasers with fans and turns the resulting modulation of the light beams into an autonomous soundscape. The piece is called “divider” and is a large, wall-mounted set of rails upon which seven red lasers are mounted on one end with seven matching light sensors mounted on the other end. Interrupting the lasers’ paths are forty-two brushless fans. Four Arduino Megas control the unit.

3Laser beams shining into light sensors don’t do much of anything on their own, but when spinning fan blades interrupt each laser beam it modulates the solid beams and turns the readings of the sensors on the far end into a changing electrical signal which can be played as sound. Light being modulated by fan blades to create sound is the operating principle behind a Fan Synth, which we’ve discussed before as being a kind of siren (or you can go direct to that article’s fan synth demo video to hear what kind of sounds are possible from such a system.)

This project takes this entire concept of a fan synth further by not only increasing the number of lasers and fans, but by tying it all together into an autonomous system. The lasers are interrupted repeatedly and constantly, but never simultaneously. Listen to and watch it in action in the video below.

Continue reading “Autonomous Musical Soundscapes from 42 Fans and 7 Lasers”

Toy Piano Gets Synth Overhaul

The Peanuts cartoon character Schroeder liked to bang out Beethoven a toy piano. Now, thanks to this hack from [Liam Lacey], Schroeder can switch to Skrillex. That’s because [Liam] built a polyphonic synth into a toy piano. It’s an impressive build that retains the look and feel of the piano, right down to a laser-etched top panel with knobs that match the glossy black styling.

The brains of the synthesizer is a Beaglebone Black using the Maximillian synthesis library. To capture the key presses, he used Velostat, a pressure-sensitive material that changes resistance under pressure. This is probably the only toy piano in the world with fully polyphonic velocity and aftertouch. The build also includes MIDI support, with two ports on the back. [Liam]’s build log is full of more details than we can even summarize here.

This beautiful build won [Liam] first place in the Element 14 Music Tech competition, and it is a well-deserved prize for a clean and elegant way to update a vintage piano.

Continue reading “Toy Piano Gets Synth Overhaul”

Hackaday Prize Entry: A Cute Synthesizer

For electronics aficionados, there are few devices cooler than music synthesizers. The first synths were baroque confabulations of opamps and ladder filters. In the 70s and 80s, synths began their inexorable march toward digitization. There were wavetable synths that stored samples on 27-series EPROMs. Synths on a chip, like the MOS 6581 “SID chip”, are still venerated today. For his Hackaday Prize entry, [Tim] is building his own synthesizer from scratch. It isn’t a copy of an old synth, instead it’s a completely modern synthesizer with a classic sound.

[Tim] is a former game developer and has already released a synthesizer of sorts. Rhythm Core Alpha 2 for the Nintendo DSi and 3DS is a fully functional synthesizer, but the limitations of the Nintendo hardware made [Tim] want to build his own synth from scratch.

The specs for the synth are more of a wish list, but already [Tim] has a few design features nailed down. This is a virtual analog synth, where everything is digital and handled by DSP algorithms. It’s polyphonic and MIDI capable, with buttons and dials for almost every parameter. For the few things you can’t do with a knob, [Tim] is including a touch screen display.

[Tim] already has the synthesis model working, and from the videos he’s put together, the whole thing sounds pretty good. The next step is turning a bunch of wires, breadboards, and components into  something that looks like an instrument. We can’t wait to see how this one turns out!

You can check out a few of [Tim]’s synth videos below.

Continue reading “Hackaday Prize Entry: A Cute Synthesizer”