Ruggedizing A Cheap Camera For Spacecraft Testing

Name the countries that house a manned space program. In order of arrival in space, USSR/Russian Federation, United States of America, People’s Republic of China. And maybe one day, Denmark. OK, not the Danish government. But that doesn’t stop the country having a manned space program, in the form of Copenhagen Suborbitals. As the tagline on their website has it: “We’re 50 geeks building and flying our own rockets. One of us will fly into space“. If that doesn’t catch the attention of Hackaday readers, nothing will.

For their rocket testing they need a lot of video feeds, and for that they use cheap Chinese GoPro clones. The problem with these (and we suspect many other cameras) is that when subjected to the temperature and vibration of being strapped to a rocket, they cease to work. And since even nonprofit spaceflight engineers are experts at solving problems, they’ve ruggedized the cameras to protect them from vibration and provide adequate heatsinking.

The heat issue is addressed by removing the camera case and attaching its metal chassis directly to a heatsink that forms the end of an extruded aluminium case. Vibration was causing the camera SD cards to come loose, so these are soldered into their sockets. Power is provided by a pair of 18650 cells with a switching regulator to provide internal power, and another to allow the unit to be charged from a wide range of input voltages. A PCB houses both the regulators and sockets for cable distribution. There is even a socket on top of the case to allow a small monitor to be mounted as a viewfinder. Along the way they’ve created a ruggedized camera that we think could have many applications far beyond rocket testing. Maybe they should sell kits!

We’ve covered Copenhagen Suborbitals before quite a few times, from their earliest news back in 2010, through a look at their liquid-fueled engine, to a recent successful rocket launch. We want to eventually report on this project achieving its aim.

Thanks [Morten] for the tip.

Under The (Linux) Hood

We’ve often heard that you don’t need to know how an engine works to drive a car, but you can bet that professional race car drivers know. By analogy, you can build lots of systems with off-the-shelf boards like Raspberry Pis and program that using Python or some other high-level abstraction. The most competent hackers, though, know what’s going on inside that Pi and what Python is doing under the hood down to some low level.

If you’ve been using Linux “under the hood” often means understanding what happens inside the kernel–the heart of the Linux OS that manages and controls everything. It can be a bit daunting; the kernel is simple in concept, but has grown over the years and is now a big chunk of software to approach.

Your first embedded system project probably shouldn’t be a real time 3D gamma ray scanner. A blinking LED is a better start. If you are approaching the kernel, you need a similar entry level project. [Stephen Brennan] has just the project for you: add your own system call to a custom Linux kernel.

Continue reading “Under The (Linux) Hood”

Hackenings: Technologica Incognita Parties After SHA2017 Plans

Welcome to [Hackenings], our weekly calendar of what’s going on in the global hackerspace community this week. As ever, if you have any upcoming events that you’d like us to cover, email us at tips@hackaday.com and put [Hackenings] in the subject so that we don’t miss it.

TechInc Turns Five!

Technologia Incognita is a five-year-old hackerspace in Amsterdam, and they’re having a party on the 26th. How do you celebrate five years of social hacking, creative cooking, and general geekery? With more of the same, plus drinks. If you’ve never been to TechInc, you’ll find directions here.

The TechInc crew is not all play and no work, however. Their party coincides with the end of the second organizational planning meeting for SHA2017, a summer outdoor camping hacker camp/festival/conference that’s going to take place next summer, not coincidentally just outside of Amsterdam.

The European hacker scene is a little bit like international soccer / football — every four years there’s a World Cup, and in the off years there are equally important regional tournaments. The German Chaos Communication Camp and the Dutch series-of-camps-that-changes-name-every-time are like this, but for us. If you missed the CCC last summer, or ToorCamp this summer, then start making plans for SHA2017 next summer.

Don’t Forget Dublin

We mentioned this last week, but TOG Hackerspace in Dublin is having a 36 hour hackathon starting today (the 19th). This looks like a great time to get together with other nerds and make something crazy in a shortish amount of time. If you’re anywhere nearby, you should head on over. After all, it’s for science!

New Record For Balloon: Duration Aloft

High-altitude balloon flights have become somewhat of a known quantity these days. Although it’s still a fun project that’ll bring your hackerspace together on a complex challenge, after the first balloon or two, everyone starts to wonder”what next?”. Higher? Faster? Further? Cheaper? More science? There are a variety of different challenges out there.

A group of Stanford students just bagged a new record, longest time in flight, with their SSI-41 mission. In addition to flying from coast to coast, on a track that went waaaay up into Canadian airspace, they logged 79 hours of flight time.

altvstimeThe secret? Val-Bal. A “valve ballast” gas venting valve and ballast dispenser system that kept the balloon from going too high (and popping) or dropping back down to earth. The balance seems to have worked nearly perfectly — check the altitude profile graph. We’d love to see more details about this system. If anyone out there on the team does a writeup, let us know?

There are as many interesting ways to get into high-altitude ballooning as there are hackers. We love the extreme economy of the Pico Space Balloon project, which has gone around the world (twice!) on a solar-powered party balloon. And we’ll give both the best-name and ridiculous-concept awards to the Tetroon. But for now, most time aloft goes to the Stanford team. Congrats!

[via the Bangor Daily News, if you can believe that]

EM Drive Paper Published By Eagleworks Team

There are one or two perennial scientific stories that sound just too good to be true, but if they delivered on their promise would represent a huge breakthrough and instantly obsolete entire fields. One example is so-called “cold fusion”, the idea that nuclear fusion could be sustained with a net energy release at room temperature rather than super-high temperature akin to that of the sun. We all wish it could work, but so far it has obstinately refused. As a TV actor portraying a space engineer of the future once said, one “cannae change the Laws of Physics“.
Continue reading “EM Drive Paper Published By Eagleworks Team”

Barely-There GSM GPS Tracker

What’s the most un-intrusive GPS you’ve ever seen? How about for a bike? Redditor [Fyodel] has built a Teensy-based GPS/GSM tracker that slides into your bike’s handlebars and really is out of sight.

The tracker operates on T-Mobile’s 2G service band — which will enable the device to work until about 2020 — since AT/T is phasing out their service come January. Since each positioning message averages 60 bytes, an IoT data plan is sufficient for moderate usage, with plans to switch over to a narrow-band LTE service when it becomes more affordable. [Fyodel] admits that battery life isn’t ideal at the moment, but plans to make it more efficient by using a motion sensor to ensure it’s only on when it needs to be.

Continue reading “Barely-There GSM GPS Tracker”

3D Printed Moon Phase Clock

Someone once observed that the moon is a harsh mistress. But that doesn’t mean you can’t keep track of her, specially with this awesome moon phase clock that [G4lile0] designed and built.

It uses a 3D printed moon model combined with a series of LEDs to create the phases. These LEDs are driven by an Arduino that calculates the phase to show, as well as driving a small OLED display that shows the date and time. There is even a party mode for all of those lunar raves that you host.

[G4lile0] has done an excellent job of documenting the code that drives the lamp, so it would be easy to add features, or adapt this design to show the phases of another moon or add other features. It’s an excellent overall design, and kudos to [G4lile0] for doing it all with open source tools like FreeCAD.

Continue reading “3D Printed Moon Phase Clock”