The First Bug On Mars

Interplanetary probes were a constant in the tech news bulletins of the 1960s and 1970s. The Space Race was at its height, and alongside their manned flights the two superpowers sent unmanned missions throughout the Solar System. By the 1980s and early 1990s the Space Race had cooled down, the bean counters moved in, and aside from the spectacular images of the planets periodically arriving from the Voyager series of craft there were scant pickings for the deep space enthusiast.

The launch in late 1996 of the Mars Pathfinder mission with its Sojourner rover then was exciting news indeed. Before Spirit, the exceptionally long-lived Opportunity, and the relatively huge Curiosity rover (get a sense of scale from our recent tour of JPL), the little Sojourner operated on the surface of the planet for 85 days, and proved the technology for the rovers that followed.

In these days of constant online information we’d see every nuance of the operation as it happened, but those of us watching with interest in 1997 missed one of the mission’s dramas. Pathfinder’s lander suffered what is being written up today as the first bug on Mars. When the lander collected Martian weather data, its computer would crash.

Like many other spacecraft, the lander’s computer system ran the real-time OS VxWorks. Of the threads running on the craft, the weather thread was a low priority, while the more important task of servicing its information bus was a high priority one. The weather task would hog the resources, causing the operating system equivalent of an unholy row in our Martian outpost. A priority inversion bug, and one that had been spotted before launch but assigned a low priority.

You can’t walk up to a computer on another planet and swap out a few disks, so the Pathfinder team had to investigate the problem on their Earthbound replica of the lander. The fix involved executing some C code on an interpreter prompt on the spacecraft itself, something that would give most engineers an extremely anxious moment.

The write-up is an interesting read, it’s a translation from a Russian original that is linked within it. If the work of the JPL scientists and engineers interests you, this talk from the recent Hackaday superconference might be of interest.

[via Hacker News]

Track Wi-Fi Devices In Your Home

How do you audit your home Wi-Fi network? Perhaps you log into your router and have a look at the connected devices. Sometimes you’ll find an unexpected guest, but a bit of detective work will usually lead you to the younger nephew’s game console or that forgotten ESP8266 on your bench.

Wouldn’t it be useful if your router could tell you where all the devices connected to it are? If you are [Zack Scholl], you can do all this and more, for his FIND-LF system logs Wi-Fi probe requests from all Wi-Fi devices within its range even if they are not connected, and triangulates their position from their relative signal strengths across several sniffing receivers. These receivers are a network of Raspberry Pis with their own FIND-LF server, and any probe requests they pick up are forwarded to [Zack]’s FIND server (another of his projects) which does the work of collating the locations of devices.

It’s an impressive piece of work, though with a Raspberry Pi at each receiver it could get a little pricey. [Zack] has done other work in this field aside from the two projects mentioned here, his other work includes an implementation of the [Harry Potter] Marauder’s Map.

This is by no means the only indoor location system we’ve seen over the years. One that uses ESP8266 modules for example, or this commercial product that is similar to the project shown here.

PURE Modules Aim To Make Prototyping Easier

[Sashi]’s PURE modules system wants your next wireless microcontroller and sensor module project to be put together using card-edge connectors. But it’s a lot deeper than that — PURE is an entire wireless gadget development ecosystem. Striking a balance between completeness and modularity is very difficult; a wire can carry any imaginable electronic signal, but just handing someone a pile of wires presents them a steep learning curve. PURE is at the other end of the spectrum: everything is specified.

So far, two microcontroller options are available in the system, the nRF52 series and TI’s CC2650. Both of these run the Contiki OS, so it doesn’t matter which of these you choose. Wired data is all transmitted over I2C and connects up via the previously-mentioned card-edge connectors. On the wireless side, data transport is handled through an MQTT broker, using the MQTT-sn variant which is better suited to small radio devices. At the protocol layer everything uses Protocol Buffers, Google’s newest idea for adding some structure to the data.

Continue reading “PURE Modules Aim To Make Prototyping Easier”

The Tiny SCSI Emulator

For fans of vintage computers of the 80s and 90s, SCSI can be a real thorn in the side. The stock of functioning hard drives is dwindling, and mysterious termination issues are sure to have you cursing the SCSI voodoo before long. Over the years, this has led to various projects that aim to create new SCSI hardware to fill in where the original equipment is too broken to use, or too rare to find.

[David Kuder]’s tiny SCSI emulator is designed for just this purpose. [David] has combined a Teensy 3.5 with a NCR5380 SCSI interface chip to build his device. With a 120MHz clock and 192K of RAM, the Teensy provides plenty of horsepower to keep up with the SCSI signals, and its DMA features don’t hurt either.

Now, many earlier SCSI emulation or conversion projects have purely focused on storage – such as the SCSI2SD, which emulates a SCSI hard drive using a microSD card for storage. [David]’s pulled that off, maxing out the NCR5380’s throughput with plenty to spare on the SD card end of things. Future work looks to gain more speed through a SCSI controller upgrade.

But that’s not all SCSI’s good for. Back in the wild times that were the 80s, many computers, and particularly the early Macintosh line, were short on expansion options. This led to the development of SCSI Ethernet adapters, which [David] is also trying to emulate by adding a W5100 Ethernet shield to his project. So far the Cabletron EA412 driver [David] is using is causing the Macintosh SE test system to crash after initial setup, but debugging continues.

It’s always great to see projects that aim to keep vintage hardware alive — like this mass repair of six Commodore 64s.

Make Mulled Wine With A Processor Heatsink!

Now, over the holiday season there seems to be a predilection towards making merry and bright. As many an engineer and otherwise are sure to note, fine alcohols will facilitate this process. One such warm holiday beverage is mulled wine; there are many traditions on how to make it, but a singular approach to preparing the beverage would be to re-purpose an old PC and a CPU liquid cooling unit into a mulled wine heating station.

Four years ago, [Adam] found himself staring at a pile of mostly obsolete PCs in his IT office and pondering how they could be better used. He selected one that used a power-hungry Pentium 4 — for its high heat output — strapped a liquid cooling block to the CPU and pumped it full of the holiday drink. It takes a few hours to heat three liters of wine up to an ideal 60 Celsius, but that’s just in time for lunch! The Christmastime aroma wafting through the office is nice too.

Continue reading “Make Mulled Wine With A Processor Heatsink!”

Ceiling Tiles Give It Up For Christmas LED Ornaments

The great thing about holidays is that they always seem to require some shiny things. The modern version of shiny things seems to be LEDs and advances in technology being what they are, we now have amazing programmable LEDs. And programmable LEDs mean animated shiny things! Years ago, [wpqrek] made an LED ornament using discrete components. This year he revisited his ornament and decided to make a new, animated, RGB ornament.

[Wpqrek]’s build is based around five WS2812b strips connected to an Arduino Pro Mini. The ornament itself is a thick styrofoam ceiling tile cut into a star shape with a red-painted wooden frame. Decorated with baubles and stars, the LED strips start in the center and end up at each point in the star. With each strip connected in parallel to the Pro Mini, [wpqrek] used the Arduino Light Animation library to handle the animations.

[Wpqrek] says the result is too big for his tree, so he uses it as a stand-alone ornament. Perhaps using lighter materials would help — or getting a bigger tree! Check out the Arduino lighting controller or the Trompe-l’oeil Menorah for more holiday hacks.

Continue reading “Ceiling Tiles Give It Up For Christmas LED Ornaments”

3D Printing With Yarn And Silicone

This one is apparently a few years old, but the idea looks so good that we’re left wondering whatever happened to it.

[Seyi Sosanya] made what amounts to a 3D printer, but one that prints in a unique way: wrapping yarn around pillars and then post-dipping them in a silicone glue. The result is a tough, flexible 3D mesh that’s lightweight and looks fairly resilient. We’re not at all sure what it’s good for, but watching the video about the project (embedded below) makes us want to try our hand at this sort of thing.

So what happened? Where did this project go? Is anyone else working on a glue-plus-fabric style printer? Is anyone doing this with carbon fiber and epoxy? We can also imagine that with the right adhesive this could be used less like a loom and more like a traditional FDM machine, although weaving the layers together may provide additional strength in what would be the Z direction, and for that you’d need the supports.

Continue reading “3D Printing With Yarn And Silicone”