Visualization Of A Phased Array Antenna System

Phased array antenna systems are at the cusp of ubiquity. We now see Multiple-Input Multiple-Output (MIMO) antenna systems on WiFi routers. Soon phased array weather radar systems will help to predict the weather and keep air travel safe, and phased array base stations will be the backbone of 5G which is the next generation of wireless data communication.  But what is a phased array antenna system?  How do they work?  With the help of 1024 LEDs we’ll show you.

Continue reading “Visualization Of A Phased Array Antenna System”

Acoustic Levitation With A Twist

Don’t blame us for the click-baity titles in the source articles about this handheld “acoustic tractor beam”. You can see why the popular press tarted this one up a bit, even at the risk of drawing the ire of Star Trek fans everywhere. Even the journal article describing this build slipped the “tractor beam” moniker into their title. No space vessel in distress will be towed by [Asier Marzo]’s tractor beam, unless the aliens are fruit flies piloting nearly weightless expanded polystyrene beads around the galaxy.

That doesn’t detract from the coolness of the build, revealed in the video below. There’s no tutorial per se, but an Instructables post is promised. Still, a reasonably skilled hacker will be able to replicate the results with ease straight from the video. Using mostly off the shelf hardware, [Marzo] creates a bowl-shaped phased array of ultrasonic transducers driven by an Arduino through a DC-DC converter and dual H-bridge driver board to boost the 40 kHz square waves from 5 Vpp to 70 Vpp. By controlling the phasing of the signals, the tractor beam can not only levitate small targets but also move them axially. It looks like a lot of fun.

Acoustic levitation is nothing new here – we’ve covered 3D acoustic airbending, as well as an acoustic flip-dot display. Being able to control the power of sound waves in a handheld unit is a step beyond, though.

Continue reading “Acoustic Levitation With A Twist”

Pretty Fly For A DIY Guy

Milling machines can be pretty intimidating beasts to work with, what with the power to cut metal and all. Mount a fly cutter in the mill and it seems like the risk factor goes up exponentially. The off-balance cutting edge whirling around seemingly out of control, the long cutting strokes, the huge chips and the smoke – it can be scary stuff. Don’t worry, though – you’ll feel more in control with a shop-built fly cutter rather than a commercial tool.

Proving once again that the main reason to have a home machine shop is to make tools for the home machine shop, [This Old Tony] takes us through all the details of the build in the three-part video journey after the break. It’s only three parts because his mill released the Magic Smoke during filming – turned out to be a bad contactor coil – and because his legion of adoring fans begged for more information after the build was finished. But they’re short videos, and well worth watching if you want to pick up some neat tips, like how to face large stock at an angle, and how to deal with recovering that angle after the spindle dies mid-cut. The addendum has a lot of great tips on calculating the proper speed for a fly cutter, too, and alternatives to the fly cutter for facing large surfaces, like using a boring head.

[ThisOldTony] does make things other than tooling in his shop, but you’ll have to go to his channel to find them, because we haven’t covered too many of those projects here. We did cover his impressive CNC machine build, though. All [Tony]’s stuff is worth watching – plenty to learn.

Continue reading “Pretty Fly For A DIY Guy”

Hacked Television Uses No Power In Standby Mode

How much effort do you put into conserving energy throughout your daily routine? Diligence in keeping lights and appliances turned off are great steps, but those selfsame appliances likely still draw power when not in use. Seeing the potential to reduce energy wasted by TVs in standby mode, the [Electrical Energy Management Lab] team out of the University of Bristol have designed a television that uses no power in standby mode.

The feat is accomplished through the use of a chip designed to activate at currents as low as 20 picoamps.  It, and a series of five photodiodes, is mounted in a receiver which attaches to the TV. The receiver picks up the slight infrared pulse from the remote, inducing a slight current in the receiving photodiodes, providing enough power to the chip which in turn flips the switch to turn on the TV. A filter prevents ambient light from activating the receiver, and while the display appears to take a few seconds longer to turn on than an unmodified TV, that seems a fair trade off if you aren’t turning it on and off every few minutes.

Continue reading “Hacked Television Uses No Power In Standby Mode”

Browsing Forth

Forth has a strong following among embedded developers. There are a couple of reasons for that. Almost any computer can run Forth, even very small CPUs that would be a poor candidate for running programs written in C, much less host a full-blown development environment. At its core, Forth is very simple. Parse a word, look the word up in a dictionary. The dictionary either points to some machine language code or some more Forth words. Arguments and other things are generally carried on a stack. A lot of higher-level Forth constructs can be expressed in Forth, so if your Forth system reaches a certain level of maturity, it can suddenly become very powerful if you have enough memory to absorb those definitions.

If you want to experiment with Forth, you probably want to start learning it on a PC. There are several you can install, including gForth (the GNU offering). But sometimes that’s a barrier to have to install some complex software just to kick the tires on a system.

We have all kinds of other applications running in browsers now, why not Forth? After all, the system is simple enough that writing Forth in Javascript should be easy as pie. [Brendanator] did just that and even enhanced Forth to allow interoperability with Javascript. The code is on GitHub, but the real interesting part is that you can open a Web browser and use Forth.

Continue reading “Browsing Forth”

Another Electric Longboard Goes The Distance

Looks like electric longboards are becoming a thing, with increasingly complex electronics going into them to squeeze as much performance as possible out of them. When an electric longboard lasts for 35 miles, can longboard hypermiling be far behind?

If endurance longboarding sounds familiar, it’s because we just covered a 25-mile electric that outlasted its rider. To get the extra 10 miles, [Andrew] cheated a little, with a backpack full of extra batteries powering his modified Boosted Board, a commercially available electric longboard. But the backpack battery was only a prototype, and now [Andrew] is well on his way to moving those batteries to a custom underslung enclosure on his new “Voyager” board. Eschewing balancing and monitoring circuitry in favor of getting as many batteries on board as possible, [Andrew] managed sixty 18650s in a 10S6P configuration for 37 volts at 21 Ah. He didn’t scrimp on tools, though – a commercial terminal welder connects all the battery contacts. We really like the overall fit and finish and the attention to detail; an O-ring seal on the 3D-printed enclosure is a smart choice.

Voyager isn’t quite roadworthy yet, so we hope we’ll get an update and perhaps a video when [Andrew] goes for another record.

Hand Cranked Generator Charges Supercaps, Starts Car

Pity the lowly lead-acid battery. A century of use as the go-to method for storing enough electrons to spin the starter motor of a car engine has endeared it to few.  Will newer technology supplant that heavy, toxic, and corrosive black box under your hood? If this supercapacitor boost box is any indication, then we’d say lead-acid’s days are numbered.

To be fair, we’ll bet that number is still pretty big. It takes a lot to displace a tried and true technology, especially for something as optimized as the lead-acid battery. But [lasersaber]’s build shows just how far capacitive storage has come from the days when supercaps were relegated to keeping your PC’s clock running. With six commercial 400F caps and a custom-built balance board, the bank takes a charge from a cheap 24V hand generator. The output is either to a heavy-duty lighter socket or some automotive-style lugs, and the whole thing is housed in a simple box partially constructed using energy stored in the bank. Can the supercaps start a car? Stay tuned after the break for the answer.

Although we’ve seen supercaps replace a motorcycle battery before, we’re a little disappointed that the caps used here only have a 1500-hour life – lead-acid wins that fight hands down. But this one gives us lots of ideas for future builds, and we’re heartened by the fact that the supercaps for this build ring up to less than $70.

Continue reading “Hand Cranked Generator Charges Supercaps, Starts Car”