A Victrola For The 21st Century

We’ve lost something tangible in our listening to music, as we made the move from physical media through MP3 players to streaming services on our mobile devices. A 12″ vinyl disc may be slightly cumbersome, but there is an undeniable experience to pulling it from the sleeve and placing it on the turntable. Would you like to recreate that? [Castvee8] would, because he’s created a 21st-century version of a wind-up gramophone, complete with a turntable and horn.

Under the hood is an Arduino-controlled MP3 player, while on the surface is a 3D-printed turntable and horn. On the turntable is placed a CD, and a lead screw moves the horn across it during play to simulate the effect of a real turntable. An Arduino motor controller shield drives the turntable and lead screw, and at the end of each song, the horn is automatically returned to the start of the CD as if it were a record.

The effect is purely aesthetic but should make for an unusual talking point if nothing else. Surprisingly this project is not the first of its type, in the past, we’ve shown you another one that played a real CD in the place of the record on the turntable.

Ask Hackaday: What’s In Your Digital Bugout Bag?

Your eyes pop open in the middle of the night, darting around the darkened bedroom as you wonder why you woke up. Had you heard something? Or was that a dream? The matter is settled with loud pounding on the front door. Heart racing as you see blue and red lights playing through the window, you open the door to see a grim-faced police officer standing there. “There’s been a hazardous materials accident on the highway,” he intones. “We need to completely evacuate this neighborhood. Gather what you need and be ready to leave in 15 minutes.”

Most people will live their entire lives without a scenario like this playing out, but such things happen all the time. Whether the disaster du jour is man-made or natural, the potential to need to leave in a big hurry is very real, and it pays to equip yourself to survive such an ordeal. The primary tool for this is the so-called “bugout bag,” a small backpack for each family member that contains the essentials — clothing, food, medications — to survive for 72 hours away from home.

A bugout bag can turn a forced evacuation from a personal emergency into a minor inconvenience, as those at greatest risk well know — looking at you, Tornado Alley. But in our connected world, perhaps it pays to consider updating the bugout bag to include the essentials of our online lives, those cyber-needs that we’d be hard-pressed to live without for very long. What would a digital bugout bag look like?

Continue reading “Ask Hackaday: What’s In Your Digital Bugout Bag?”

Dublin Knows How To Bring-a-Hack

When on the road, we love to stop by a local hackerspace and connect with the hacker community. On Friday, TOG Hackerspace in Dublin, Ireland opened their doors to host a Bring-a-Hack with Hackaday and Tindie.

The city center of Dublin is anything but a grid. The cobblestone roads meander every which way and are a puzzle of one-way and surprise construction, none of which seemed to faze Google’s navigation algorithms. I was happy to be operating the smartphone instead of the rental vehicle. A big thanks goes to Jenny List for taking on the stress of driving on our refreshments run without coming in contact with people or cars.

You’re likely wondering why the street layout of the city deserves such attention. I’m used to centrally-located Hackerspaces being tight on space, and indeed the members of TOG cautioned us that 50 people would feel cramped. Much the opposite, the pubs, restaurants, hotels, and performing arts centers are not small, nor winding, nor made of cobblestones. Dublin is a fantastic place to party, with plenty of space for us hardware geeks to congregate. TOG itself, which about 20 minutes walk from the central Temple Bar area (where this image was taken), even has a small parking lot which made our beer drop off and pizza delivery a breeze.

A Tour of TOG Hackerspace

TOG is a Gaelic word which loosely translates as “to make”. Declan met us for the beer drop and gave us a tour when we returned for the evening event. The building is divided into several different spaces, starting with an entry area that serves as a meeting space, gaming room, and showcase of projects.

Where you might see prayer flags strung up on an apartment building, we see floppy disks (both the hard and soft variety) strung around the meeting area. Declan has a shamrock of K’nex parts wired up with a microphone controlled RGB LED strip — it’s like a test your strength game to see who can shout the coolest colors.

I also really enjoyed the fabric anatomy display that has snaps on each organ and only lights up the labels if you complete the circuits in the correct locations.

These are just the tip of the iceberg. There’s much more after the break so join me for the rest of the tour, and some of the notable hacks that showed up on Friday evening.

Continue reading “Dublin Knows How To Bring-a-Hack”

Space Garbage Truck Takes Out The Trash

On April 2nd, 2018 a Falcon 9 rocketed skywards towards the International Space Station. The launch itself went off without a hitch, and the Dragon spacecraft delivered its payload of supplies and spare parts. But alongside the usual deliveries, CRS-14 brought a particularly interesting experiment to the International Space Station.

Developed by the University of Surrey, RemoveDEBRIS is a demonstration mission that aims to test a number of techniques for tackling the increasingly serious problem of “space junk”. Earth orbit is filled with old spacecraft and bits of various man-made hardware that have turned some areas of space into a literal minefield. While there have been plenty of ideas floated as to how to handle this growing issue, RemoveDEBRIS will be testing some of these methods under real-world conditions.

The RemoveDEBRIS spacecraft will do this by launching two CubeSats as test targets, which it will then (hopefully) eliminate in a practical demonstration of what’s known as Active Debris Removal (ADR) technology. If successful, these techniques could eventually become standard operating procedure on future missions.

Continue reading “Space Garbage Truck Takes Out The Trash”

DIY Designer Wallet From Designer Bag

Why do people drop hundreds of dollars on designer goods? The easy answer is that, in theory, the goods are worth the expense. The materials, craftsmanship, and attention to detail are all top-notch and culminate in the finest finery money can buy.

So, would you spend hundreds of dollars on a designer wallet? If you have leather crafting skills and a thrift store nearby, you could just follow [Corter Leather]’s example and make your own. He found a diamond in the rough—a genuine, well-loved Louis Vuitton bag languishing in a secondhand shop. The leather bottom and handles were dry and worn, but the signature LV canvas was still in great shape. Never crafted leather? If you can’t get free scraps for practicing, then deconstructing cheap, used stuff is the next best thing.

To isolate the canvas, [Corter] carefully removed the bag’s handles, bottom, liner, and zipper and then popped the rivets and peeled the backing from the fabric. He drew up a pattern in Illustrator that pays homage to the illustrious designer’s wallets and cut the pieces out of 3oz vegetable tanned leather using card stock templates.

[Corter] brought his A-game to the details. Every visible edge is painted Italian red, which he applied with an awl for a crisp line. The larger pockets have hidden stitches that keep cards from drifting to the bottom and throwing off the shape. No need to open your wallet to see how he did it—just watch the video after the break.

Though it technically isn’t a real Louis Vuitton, a thief wouldn’t know it until later. Maybe [Corter] should add a pickpocket alarm.

Continue reading “DIY Designer Wallet From Designer Bag”

An SSB Transceiver On Only One Type Of Transistor

There are a multiplicity of transmission modes both new and old at the disposal of a radio amateur, but the leader of the pack is still single-sideband or SSB. An SSB transmitter emits the barest minimum of RF spectrum required to reconstitute an audio signal, only half of the mixer product between the audio and the RF carrier, and with the carrier removed. This makes SSB the most efficient of the analog voice modes, but at the expense of a complex piece of circuitry to generate it by analog means. Nevertheless, radio amateurs have produced some elegant designs for SSB transmitters, and this one for the 80m band from [VK3AJG] is a rather nice example even if it isn’t up-to-the-minute. What makes it rather special is that it relies on only one type of device, every one of its transistors is a BC547.

In design terms, it follows the lead set by other simple amateur transmitters, in that it has a 6 MHz crystal filter with a mixer at either end of it that switch roles on transmit or receive. It doesn’t use the bidirectional amplifiers popularised by VU2ESE’s Bitx design, instead, it selects transmit or receive using a set of diode switches. The power amplifier stretches the single-device ethos to the limit, by having multiple BC547s in parallel to deliver about half a watt.

While this transmitter specifies BC547s, it’s fair to say that many other devices could be substituted for this rather aged one. Radio amateurs have a tendency to stick with what they know and cling to obsolete devices, but within the appropriate specs a given bipolar transistor is very similar to any other bipolar transistor. Whatever device you use though, this design is simple enough that you don’t need to be a genius to build one.

Via [G4USP]. Thanks [2ftg] for the tip.

Tiny Neural Network Library In 200 Lines Of Code

Neural networks have gone mainstream with a lot of heavy-duty — and heavy-weight — tools and libraries. What if you want to fit a network into a little computer? There’s tinn — the tiny neural network. If you can compile 200 lines of standard C code with a C or C++ compiler, you are in business. There are no dependencies on other code.

On the other hand, there’s not much documentation, either. However, between the header file and two examples, you should be able to figure it out. After all, it isn’t much code. The example in the repository directs you to download a handwriting number recognition dataset from the Internet. Once it trains that data, it shows you the expected output from the first item in the data set and then processes the first item and shows you the result.

Continue reading “Tiny Neural Network Library In 200 Lines Of Code”