Clacker Hacker: Hot Rod Switch Mods

Whether you’re a programmer, gamer, writer, or data entry specialist, the keyboard is an extension of your nervous system. It’s not so much a tool as it is a medium for flow — for being in the zone. So I think it’s only natural that you should care deeply about your keyboard — how it looks, how it sounds, and above all, how it feels to finger-punch those helmeted little switches all the live-long day. That’s my excuse, anyway.

It might surprise you that mechanical keyboard switches can be modified in a number of ways. Depending on what you want from your keyboarding experience, you can make switches feel lighter or less scratchy, quiet them down, or tighten up any wobble in the housing. Why would you want to do this? Because customization is fun. Because electromechanical things are awesome, and because it’s fun to take switches apart and put them back together again. Because it’s literally hacking and this is Hackaday.

This is a pair of plates from a macro keeb I’m making that will sit directly in front of my trackball.

I got into switch modding because I wanted to put Cherry clears in my dactyl, but worried that they would take too much force to actuate and wear my fingers out. So I bought some really light (39g) springs and was really looking forward to swapping them into the clears, but they just don’t work. Like, physically. Slider goes down, slider gets stuck. It will come back up, but only if I hit it again and smear my finger to the side a bit at the same time. Those springs must be too weak to return clear sliders.

I took this as a sign that I should suck it up and use browns instead. After all, no one else has to know what my sliders look like. While I was opening switches, I tried out one of these super-light springs in a brown, thinking maybe they wouldn’t have to go to waste. Not only did the lighter spring work in the brown, it felt pretty nice. It’s hard to imagine how a whole keeb would feel based on a single switch, but if you can gather a handful and snap them into a plate to riffle your fingers over them, well, it’s probably close enough to a full keyboard to get a good feel for whatever mod you’re doing.

Continue reading “Clacker Hacker: Hot Rod Switch Mods”

Automated Part Removal Gets Serious With The Chain Production Add-on

Giving a 3D printer the ability to remove its own prints means that it can crank out part after part automatically, without relying on a human operator between jobs. [Damien Weber] has done exactly that to his Prusa MK3/S printer, with what he calls the Chain Production Add-on.

[Damien]’s approach is one we haven’t quite seen before. When printing is complete, a fan cools the part then an arm (with what looks like utility knife blades attached at an angle) swings up and behind the bed. The arm zips forward and scoops the print off the bed, dumping the finished part in the process. It’s all made from 3D printed parts, aluminum extrusion and hardware, two stepper motors, and a driver PCB. The GitHub repository linked above holds all the design files, but there is also a project page on PrusaPrinters.org.

Not quite sure how it all works? Watch it in action in the video embedded below.

Continue reading “Automated Part Removal Gets Serious With The Chain Production Add-on”

Grok The Z80 With This Simulator

Many of us will have at some point encountered a Z80 microprocessor, whether we’ve bare-metal programmed for it, or simply had a go at blasting some invaders on a game system using one. Like all the processors of its era, it’s got a relatively simple and accessible internal block diagram, so there’s a good chance that readers well even know how it works, too. But do any of know how it really works, down to the gate, transistor, and net level? [Goran] does, because he’s written a Z80 netlist simulator that allows the running of code alongside the examination of the chip and its signals. It’s not particularly fast, achieving a modest 2.3kHz clock speed when run of a fairly high-end PC, but we’re guessing readers needing to run Z80 code for anything other than learning would use the real thing anyway.

There’s a video of the software in operation which we’ve placed below the break, and we can see it will be a fascinating tool even to people who aren’t dedicated reverse engineers. To be able to bring up a logic analyzer view of the internals of a processor while it is in operation is truly astounding if you are used to it as a black box, and to have logic diagrams at your fingertips rather than puzzling out individual transistors really gives a window into what is going on.

This isn’t the only such simulator out there, in the past we’ve mentioned Visual6502, when we covered the Monster 6502.

Continue reading “Grok The Z80 With This Simulator”

3D Printer Revives Large Format Camera

With a quarter-century of more of consumer digital cameras behind us, it’s easy to forget that there was once another way to see your photos without waiting for them to be developed. Polaroid Land cameras and their special film could give the impatient photographer a print in about a minute, but sadly outside a single specialist producer, it is no longer a product that is generally available.  [The Amateur Engineer] sought an alternative for a large format camera, by adapting a back designed for Fuji Instax film instead.

Lomography, the retailer of fun plastic cameras, had produced an Instax back for one of their cameras, and to adapt it for a Tachihara large format camera required a custom 3D-printed frame. Being quite a large item it had to be printed in three pieces and stuck together with epoxy. Then a series of light leaks had to be chased down and closed up. The result is a working Instax back for the camera, which appears to deliver the photographic goods.

We’ve seen a few digital backs for larger cameras produced with scanners, but we rather like this linear CCD one.

Digging Deep Into SD Card Secrets

To some, an SD card is simply an SD card, notable only for the amount of storage it provides as printed on the label. However, just like poets, SD cards contain multitudes. [Jason Gin] was interested as to what made SanDisk’s High Endurance line of microSDXC cards tick, so he set out to investigate.

Naturally, customer service was of no help. Instead, [Jason] started by scraping away the epoxy covering which hides the card’s test points. Some delicate soldering was required to hook up the test points to a breakout board, while also connecting the SD interface to a computer to do its thing. A DS Logic Plus signal analyzer was used to pick apart the signals going to the chip to figure out what was going on inside.

After probing around, [Jason] was able to pull out the NAND Flash ID, which, when compared to a Toshiba datasheet, indicates the card uses BiCS3 3D TLC NAND Flash. 3D NAND Flash has several benefits over traditional planar Flash technology, and SanDisk might have saved [Jason] a lot of time investigating if they’d simply placed this in their promotional material.

We’ve seen other similar hacks before, like this data recovery performed via test points. If you’ve been working away on SD cards in your own workshop, be sure to let us know!

Hackaday Links Column Banner

Hackaday Links: July 19, 2020

Care to flex your ethical hacker muscles? The Defense Advanced Research Projects Agency, better known as DARPA, is running its first-ever bug-bounty program. The event is called “Finding Exploits to Thwart Tampering”, or FETT — get it? Bounty hunter? Fett? — and is designed to stress-test security hardware developed through DARPA’s System Security Integration Through Hardware and Firmware, or SSITH. Tortured backronyms and pop culture references aside, FETT will start this month and go through September. This is not an open challenge per se; rather, the Red Team will be coordinated by crowdsourced security research company Synack, who has called for security researchers to sign on.

The Linux kernel development team has decided to join the trend away from insensitive terminology like “master/slave” and “blacklist/whitelist” in coding style. A July 4 proposal by kernel maintainer Dan Williams goes into some detail on the logic of making the change, and it’s quite convincing stuff. It’s hard to argue with the fact that code reviewers can easily be distracted by coding style changes, so replacing terms that have become lightning rods only makes sense. Linus himself has signed off on the changes for all future code; the current terminology will only be allowed for purposes of maintaining older code.

Some stories just leap off the screen when you’re scanning headlines, and a story with the term “narco-antennas” practically begs further investigation. It turns out that the drug cartels in Mexico (and probably elsewhere, but the story focused on Mexico) are quite sophisticated in terms of communications technology. Eschewing cell phones for some of their communication needs for obvious reasons, they still apparently leverage the cell system by installing their own transceivers at cell sites. This can lead to some tense moments for the engineers who maintain legitimate gear at these sites; the story above recounts one hapless tech who powered down a site to make some repairs only to be confronted by armed men upset about the loss of their radios. It’s a fascinating look at the underworld and their technology, and we can’t help but feel for the men and women who have to face down these criminals just to do their jobs.

Way back in January — remember January? — we kicked off the 2020 Hack Chat series with a fellow named Alberto Caballero, principal investigator of the Habitable Exoplanet Hunting Project. At the time, I was blown away by the fact that the tiny changes in intensity caused by planets transiting across their star’s face were detectable on Earth with instruments an amateur astronomer could easily afford. And now, the project’s crowdsourced planet hunters have hit pay dirt, with the discovery of a Saturn-sized exoplanet in orbit within the habitable zone around star GJ 3470, also known as Gliese 3470, a red dwarf about 30 parsecs away in the constellation Cancer. Their paper is still in preprint and hasn’t been peer-reviewed yet, but it’s exciting to see this kind of citizen science being done, and we’d like to congratulate the team on their achievement and wish them continued luck in their search for “Earth 2.0”

And finally, if you can’t stand the idea that future archaeologists may someday pore over your code in an attempt to understand the digital lives of their long-dead forebears, then you might want to skip this story about how GitHub shipped 21 terabytes of open-source code to cold storage. The destination for the data, contained on reels of archive film and shipped on two pallets, is the world’s long-term memory: the Artic World Archive on the island of Svalbard. Perhaps better known for the Svalbard Seed Vault, where the genetic diversity of the world’s plants is stored, the Artic Code Vault is in a nearby abandoned coal mine and set deep within the permafrost. The rationale for making the effort to preserve code makes for some interesting reading, but we can’t help but feel that like the graffitists of Pompeii, if we’d known someone would be reading this stuff in a thousand years, we might have edited out a few things.

Upgrading The RAM In A 25 Year Old Oscilloscope

From reading his extensive write-ups on the subject, there’s one thing we know for sure: [Tom Verbeure] loves his Tektronix TDS 420A oscilloscope. While it might be older than some of the people reading this, it’s still an impressive piece of hardware with more than enough bells and whistles to keep the average hacker occupied. Especially if you’re willing to perform some hardware modifications.

Note the battery to retain calibration data.

[Tom] already knew how to tickle the scope into unlocking software features, a process not unlike what we’ve seen done on more modern scopes. But there’s only so far you can get by toggling software flags.

Some of the more advanced features that are turned off in the firmware actually need additional hardware to function. Simply bumping the sample points to 120,000 in software wasn’t enough, the scope actually needs the memory to hold them in.

Now logically, if there’s a software option to increase the number of samples, there must be a hardware upgrade that goes along with it. Sure enough, [Tom] found there were 6 open spots next to the scope’s existing M5M51008 static RAM ICs.

As luck would have it the chips are still available, albeit from a different manufacturer and a bit faster than the original parts. Digikey wouldn’t sell fewer than 100 of them, but UTSource was happy to sell him 10. In this case, the parts were cheaper than the shipping cost. Installation was about as straightforward as it gets, though [Tom] does note that he had to keep the board powered up during the operation or else the scope would have lost its calibration data.

Squeezing more features out of modern scopes like the Rigol DS2072A just takes a USB cable and some software. Sometimes it’s only a matter of tapping in a code. But we certainly appreciate [Tom] putting in a little extra effort to get the most out of this classic piece of hardware.