Screenshot of the framework-built app, showing it running through Firefox

Turn A Webpage Into A Desktop App With Gluon

Electron is software for running web-written apps in the same way as native ones, and has gotten plenty of bad press for its RAM appetite around these parts. But while the execution might leave something to be desired, the concept itself is quite solid —  if you’ve already got code written for the web, a quick and easy way to bring it over to the desktop would be very valuable.

Which is why [CanadaHonk] is building a framework called Gluon, which aims to turn your web pages into desktop apps with little to no effort. We’ve seen their work a few months ago with the OpenASAR project, hacking the Discord desktop app to speed it up. Drawing from that experience, Gluon is built to be lean – with apps having low RAM and storage footprints, lightning-speed build times, and a no-nonsense API.

One of the coolest parts is that it’s able to use your system-installed browser, and not a bundled-in one like Electron. Firefox support is firmly on the roadmap, too, currently in experimental stage. Linux support is being worked on as well — the framework is Windows-born, but that’s to change. There’s also room to innovate; [CanadaHonk] recently added a hibernation feature with aggressive RAM and CPU footprint reduction when the app is minimized, something that other frameworks like this aren’t known for.

If you want to write user-facing software, JavaScript’s a decent language, and quite a few of you are going to be familiar with it. You aren’t limited to the software side of the tech world, either — tools like WebUSB and WebSerial will let you write a user interface for a board that you’ve just developed. For instance, here’s a WebSerial-based oscilloscope, a nifty serial terminal, or a hacker conference badge programming toolkit. For all that browsers have gotten wrong, they certainly don’t seem to become less abundant, and if that means you can quickly develop cross-platform hardware-facing apps, it’s certainly a useful addition to one’s toolkit.

Audio Old And New Meet In Perfect Harmony

There’s an uneasy meeting in the world of audio between digital and analogue. Traditional analogue audio reached a level of very high quality, but as old-style media-based audio sources have fallen out of favor there’s a need to replace them with ones that reflect a new digital audio world. To do this there are several options involving all-in-one Hi-Fi separates at a hefty price, a cheaper range of dongles and boxes for each digital input, or to do what [Keri Szafir] has done and build that all-in-one box for yourself.

The result is a 1U 19″ rack unit that contains an Orange Pi for connectivity and streaming, a hard drive to give it audio NAS capability, plus power switching circuitry to bring all the older equipment under automation. Good quality audio is dealt with by using a Behringer USB audio card, on which in a demonstration of how even some digital audio is now becoming outdated, she ignores the TOSlink connector.

The rear panel has all the connectors for power, USB, network, and audio laid out, while the front has an array of status lights and switches. We particularly like the hand-written lettering, which complements this as a homebrew unit. It certainly makes the Bluetooth dongle dangling at the back of our amplifier seem strangely inadequate.

If audio is your thing, we had a look at some fundamentals of digital audio as part of our Know Audio series.

Test Your Capacity For Circuit Sculpture With Flashing Lights

Have you tried your hand at circuit sculpture yet? Well, if you were waiting for the ideal first project with a great build video to go along with it, keep reading. [4dcircuitry]’s 555-based flashing circuit sculpture ticks all the go-for-it boxen for us — the component list is short, the final circuit looks cool, and well, there are blinkenlights.

Of course, it’s not quite a zero-entry project. Although [4dcircuitry] makes it look oh-so easy build it in the video below, they are using 1206 components and an SOIC-packaged 555 timer here. On the other hand, they start by smartly laying everything out on double-stick tape before applying flux and soldering. Then when it’s time to run the wires that no one wants to see, [4dcircuitry] carefully tweezers it from the tape and flips it over, re-using the tape do solder up the back side.

Don’t have the patience to solder 1206? All component sizes are beautiful, as evidenced by this amazing circuit sculpture clock.

Continue reading “Test Your Capacity For Circuit Sculpture With Flashing Lights”

A laptop with a desk phone and a 3D-printed acoustic coupler next to it

Acoustic Coupler Gets You Online Through Any Desk Phone

Up until the mid-1980s, connecting a computer to a phone line was tricky: many phone companies didn’t allow the connection of unlicensed equipment to their network, and even if they did, you might still find yourself blocked by a lack of standardized connectors. A simple workaround for all this was an acoustic coupler, a device that played your modem’s sounds directly into a phone’s receiver without any electrical connection. Modem speeds were slow anyway, so the limited bandwidth inherent in such a system was not much of a problem.

Nowadays it’s easier to find an internet connection than a phone line in many places, but if you’re stuck in an ancient hotel in the middle of nowhere you might just find [GusGorman]’s modern take on the acoustic coupler useful. The basic design is quite simple: it’s a 3D-printed box with two cups that fit a typical phone handset and a space to put a USB speaker and microphone. Thanks to minimodem it’s easy to set up a connection with any other computer equipped with a phone connection.

Continue reading “Acoustic Coupler Gets You Online Through Any Desk Phone”

Showing the end result car, with mechanum wheels and a green chassis with what seems to be a camera window on top

2022 FPV Contest: ESP32-Powered FPV Car Uses Javascript For VR Magic

You don’t always need much to build an FPV rig – especially if you’re willing to take advantage of the power of modern smartphones. [joe57005] is showing off his VR FPV build – a fully-printable small Mechanum wheels car chassis, equipped with an ESP32-CAM board serving a 720×720 stream through WiFi. The car uses regular 9g servos to drive each wheel, giving you omnidirectional movement wherever you want to go. An ESP32 CPU and a single low-res camera might not sound like much if you’re aiming for a VR view, and all the ESP32 does is stream the video feed over WebSockets – however, the simplicity is well-compensated for on the frontend. Continue reading “2022 FPV Contest: ESP32-Powered FPV Car Uses Javascript For VR Magic”

Hackaday Podcast 199: Ferrofluid Follies, Decentralized Chaos, And NTSC For You And Me

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos decided against using one of Kristina’s tin can microphones to record the podcast, though that might be a cool optional thing to do once (and then probably never again).

After a brief foray into the news that the Chaos Communications Congress will be decentralized once again this year, as COVID restrictions make planning this huge event a complete headache (among other notable symptoms), we discuss the news that the EU is demanding replaceable batteries in phones going forward.

After that, it’s time for another What’s That Sound results show, and despite repeated listens, Kristina fails to guess the thing. Even if she’d had an inkling as to what it was, she probably would have said ‘split-flap display’ instead of the proper answer, which is ‘flip-dot display’, as a few people responded. Finally, it’s on to the hacks, where we talk about uses for ferrofluid and decide that it’s one of those things that’s just for fun and should not be applied to the world as some sort of all-purpose whacking device.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

And/or download it and listen offline.

Continue reading “Hackaday Podcast 199: Ferrofluid Follies, Decentralized Chaos, And NTSC For You And Me”

Logic Gate Game Is Fun AND Educational

How well do you know your logic gates? For their final submission for STEM Projects class, [BKriet] gamified the situation using a Raspberry Pi Pico, some blinkenlights, and a not-insignificant amount of 3D printing. The result is Name! That! Gate!, a fun and educational toy that [BKriet] ultimately donated back to the class (that’s a hot move in our book).

The objective of this game is to figure out which logic gate is being used to make the output shown on the screen, given A, B, and/or C as inputs. There are ten stages to the game, and each correct stage awards the player 14 points, for a perfect score of 140. Although a random gate is loaded for every stage, code ensures that no gate is ever repeated during a single game.

This project is completely open source, so the gate is wide open. Don’t have a 3D printer? Here’s a big set of PCB logic gates, but really, you can make logic gates out of almost anything.