Toot-B-Gone, With The FartMaster 3000

Face it, we’ve all been there, in a crowded workshop building something, and horror of horrors, things are going to get a little… windy. Do you try to drop it quietly and hope nobody says the rhyme, do you bolt for the door, or can you tough it out and hold it in? Never fear, because [Roman_2798881] has got your back, with the FartMaster 3000.

No doubt born of urgent necessity, it’s a discreet wall-mounted fixture for a shop vac line which allows a casual activation of the shopvac as if some sawdust needed removing, and backing up for a safe disposal of any noxious clouds under cover of the vacuum’s whirring.

We have to admit, this one gave us something of a chuckle when we saw it in the Printables feed, but on closer inspection it’s a real device that by our observation could have been useful in more than one hackerspace of our acquaintance. There’s a square funnel in front of a piece of ducting, with a rotary valve to divert the vacuum in an appropriate direction to conceal the evidence.

Then simply turn it back to straight through, vac your pretend sawdust, and nobody’s the wiser. Unless of course, you also integrated a fart-o-meter.

Regular (Expression) Chess

[Nicholas Carlini] found some extra time on his hands over the holiday, so he decide to do something with “entirely no purpose.” The result: 84,688 regular expressions that can play chess using a 2-ply minmax strategy. No kidding. We think we can do some heavy-duty regular expressions, but this is a whole other level.

As you might expect, the code to play is extremely simple as it just runs the board through series of regular expressions that implement the game logic. Of course, that doesn’t count the thousands of strings containing the regular expressions.

Continue reading “Regular (Expression) Chess”

Polarizer clock with rainbow glow clockface

Bending Light, Bending Time: A DIY Polarizer Clock

Imagine a clock where the colors aren’t from LEDs but a physics phenomenon – polarization. That’s just what [Mosivers], a physicist and electronics enthusiast, has done with the Polarizer Clock. It’s not a perfect build, but the concept is intriguing: using polarized light and stress-induced birefringence to generate colors without resorting to RGB LEDs.

The clock uses white LEDs to edge-illuminate a polycarbonate plate. This light passes through two polarizers—one fixed, one rotating—creating constantly shifting colours. Sounds fancy, but the process involves more trial and error than you’d think. [Mosivers] initially wanted to use polarizer-cut numbers but found the contrast was too weak. He experimented with materials like Tesa tape and cellophane, choosing polycarbonate for its stress birefringence.

The final design relies on a mix of materials, including book wrapping foil and 3D printed parts, to make things work. It has its quirks, but it’s certainly clever. For instance, the light dims towards the center, and the second polarizer is delicate and finicky to attach.

This gadget is a splendid blend of art and science, and you can see it in the video below the break. If you’re inspired, you might want to look up polariscope projects, or other birefringence hacks on Hackaday.

Continue reading “Bending Light, Bending Time: A DIY Polarizer Clock”

Gaze Upon This Omni-directional Treadmill’s Clever LEGO Construction

Want to see some wildly skillful LEGO construction? Check out [Banana Gear Studios]’ omni-directional treadmill which showcases not only how such a thing works, but demonstrates some pretty impressive problem solving in the process. Construction was far from straightforward!

A 9×9 grid of LEGO shafts all turning in unison is just one of the non-trivial design challenges.

In principle the treadmill works by placing an object on a bed of identical, rotating discs. By tilting the discs, one controls which edge is in contact with the object, which in turn controls the direction the object moves. While the concept is straightforward, the implementation is a wee bit more complex. LEGO pieces offer a rich variety of mechanical functions, but even so, making a 9×9 array of discs all rotate in unison turns out to be a nontrivial problem to solve. Gears alone are not the answer, because the shafts in such a dense array are a bit too close for LEGO gears to play nicely.

The solution? Break it down into 3×3 self-contained chunks, and build out vertically with gimbals to take up the slack for gearing. Use small elastic bands to transfer power between neighbors, then copy and paste the modular 3×3 design a few times to create the full 9×9 grid. After that it’s just a matter of providing a means of tilting the discs — which has its own challenges — and the build is complete.

Check out the video below to see the whole process, which is very nicely narrated and illustrates the design challenges beautifully. You may see some similarities to Disney’s own 360° treadmill, but as [Banana Gear Studios] points out, it is a technically different implementation and therefore not covered by Disney’s patent. In an ideal world no one would worry about getting sued by Disney over an educational LEGO project posted on YouTube, but perhaps one can’t be too careful.

Continue reading “Gaze Upon This Omni-directional Treadmill’s Clever LEGO Construction”

The Helicone: Toy Or Mathematical Oddity?

We always enjoy videos from the [Mathologer], but we especially liked the recent video on the Helicone, a toy with a surprising connection to mathematics. The toy is cool all by itself, but the video shows how a sufficiently large heliocone models many “natural numbers” and acts, as [Mathologer] puts it, acts as “microscope to probe the nature of numbers.”

The chief number of interest is the so-called golden ratio. A virtual model of the toy allows easy experimentation and even some things that aren’t easily possible in the real world. The virtual helicone also allows you to make a crazy number of layers, which can show certain mathematical ideas that would be hard to do in a 3D print or a wooden toy.

Apparently, the helicone was [John Edmark’s] sculpture inspired by DNA spirals, so it is no surprise it closely models nature. You can 3D print a real one.

Of course, the constant π makes an appearance. Like fractals, you can dive into the math or just enjoy the pretty patterns. We won’t judge either way.

We’ve seen math sequences in clocks that remind us of [Piet Mondrian]. In fact, we’ve seen more than one of those.

Continue reading “The Helicone: Toy Or Mathematical Oddity?”

Deteriorating section of the UCIL plant near Bhopal, India. (Credit: Luca Frediani, Wikimedia)

Cleaning Up Bhopal: The World’s Worst Industrial Disaster

Forty years ago, on the night of Sunday 2 December of 1984, people in the city of Bhopal and surrounding communities were settling in for what seemed like yet another regular night. The worst thing in their near future appeared to be having to go back to school and work the next day. Tragically, many of them would never wake up again, and for many thousands more their lives would forever be changed in the worst ways possible.

During that night, clouds of highly toxic methyl isocyanate (MIC) gas rolled through the streets and into houses, venting from the Bhopal pesticide plant until the leak petered out by 2 AM. Those who still could wake up did so coughing, with tearing eyes and stumbled into the streets to escape the gas cloud without a clear idea of where to go. By sunrise thousands were dead and many more were left severely ill.

Yet the worst was still to come, as the number of casualties kept rising, legal battles and the dodging of responsibility intensified, and the chemical contamination kept seeping into the ground at the crippled plant. Recently there finally seems to be progress in this clean-up with the removal of 337 tons of toxic waste for final disposal, but after four decades of misgivings and neglect, how close is Bhopal really to finally closing the chapter on this horrific disaster?

Continue reading “Cleaning Up Bhopal: The World’s Worst Industrial Disaster”

More Things To Do With Your Cheap Yellow Display

The Cheap Yellow Display (CYD) is an ESP32 development board that’s been making the rounds for a while now, thanks to its value and versatility. For around $10 USD, you get a nicely integrated package that’s perfect for a wide array of projects and applications. Toss a couple in on your next AliExpress order, and all you need to do is come up with an idea. [Craig Lindley] had two ideas, and maybe they will help get those gears turning in your head. Even if you don’t need a network-connected MP3 player or GPS information display, we bet browsing the source code would be useful.

Continue reading “More Things To Do With Your Cheap Yellow Display”