Physical Aimbot Shoots For Success In Valorant

Modern competitive games have a great deal of anti-cheat software working to make sure you can’t hack the games to get a competitive advantage. [Kamal Carter] decided to work around this by building a physical aimbot for popular FPS Valorant.

The concept is straightforward enough. [Kamal] decided to hardmount an optical mouse to a frame, while moving a mousepad around beneath it with an off-the-shelf Cartesian CNC platform, but modified to be driven by DC motors for quick response. This gave him direct control over the cursor position which is largely undistinguishable from a human being moving the mouse. Clicking the mouse is achieved with a relay. As for detecting enemies and aiming at them, [Kamal] used an object detection system called YOLO. He manually trained the classifier to detect typical Valorant enemies and determine their position on the screen. The motors are then driven to guide the aim point towards the enemy, and the fire command is then given.

The system has some limitations—it’s really only capable of completing the shooting range challenges in Valorant. The vision model isn’t trained on the full range of player characters in Valorant, and it would prove difficult to use such a system in a competitive match. Still, it’s a neat way to demonstrate how games can be roboticized and beaten outside of just the software realm. Video after the break. Continue reading “Physical Aimbot Shoots For Success In Valorant”

Calipers: Do You Get What You Pay For?

Generally, you think that if you pay more for something, it must be better, right? But that’s not always true. Even if it is true at the lower end, sometimes premium brands are just barely better than the midrange. [Project Farm] looks at a bunch of different calipers — a constant fixture around the shop if you do any machining, 3D printing, or PCB layout. The price range spans from less than $10 for some Harbor Freight specials to brands like Mitutoyo, which cost well over $100. Where’s the sweet spot? See the video below to find out.

The first part of the video covers how much the units weigh, how smooth the action is, and how much force it takes to push it down. However, those are not what you probably care most about. The real questions are how accurate and repeatable they are.

Continue reading “Calipers: Do You Get What You Pay For?”

[Ben] at workbench with 3D-printed sea scooter

Watertight And Wireless In One Go: The DIY Sea Scooter

To every gadget, tool, or toy, you can reasonably think: ‘Sure I could buy this… but can I make it myself?’ And that’s where [Ben] decided he could, and got to work. On a sea scooter, to be exact.

This sea scooter was to be a fully waterproof, hermetically sealed 3D-printed underwater personal propulsion device, with the extreme constraint that the entire hull and mechanical interfaces are printed in one go. No post-printing holes for shafts, connectors, or seals. It also meant [Ben] needed to embed all electronics, motor, magnetic gearbox, custom battery pack, wireless charging, and non-contact magnetic control system inside the print during the actual print process.

As [Ben] explains, both Bluetooth and WiFi ranges are laughable once underwater. He elegantly solves this with a reed-switch-based magnetic control system. The non-contact magnetic drive avoids shaft penetrations entirely. Power comes from a custom 8S LiFePO₄ pack, charged wirelessly through the hull. Lastly, everything’s wrapped in epoxy to make it as watertight as a real submarine.

The whole trick of ‘print-in-place’ is that [Ben] pauses the builder mid-print, and drops in each subsystem like a secret ingredient. Continuing, he tweaks the printer’s Z-offset, and onwards it goes. It’s tense, high-stakes work; a 14-hour print where one nozzle crash means binning hundreds of dollars’ worth of embedded components.

Still, [Ben] took the chance, and delivered a cool, fully packed and fully working sea scooter. Comment below to discuss the possibilities of building one yourself.

Continue reading “Watertight And Wireless In One Go: The DIY Sea Scooter”

door spring

Compliant Contacts: Hacking Door Locks With Pen Springs

As you may have guessed given our name, we do love hacks around here, and this one is a great example of making some common, everyday things work in uncommon ways. [Nathan] sent in his hack to detect the door lock position in his basement.

Having a house that dates back to the 1890s, much of it was not very conducive to using off-the-shelf home automation devices. [Nathan] wanted a way to check the status of the basement deadbolt. He went about putting together a custom sensor using some spare parts, including a spare BeagleBone Black. Going full MacGyver, [Nathan] used springs from a ballpoint pen to craft a compliant contact for his sensor.

The pair of springs sat in the door frame and came in contact with the deadbolt; given they are springs, the exact position of the sensor was not very sensitive, as if too close it would just compress the springs slightly more. The springs were wired to the BeagleBone Black’s GPIO, acting as a switch to sense when there was conductivity between the springs through the deadbolt.

This wasn’t just a plug-it-in-and-it-works type of project, mind you; the BeagleBone Black was over 15 ft away from the sensors, lending plenty of opportunity for noise to be introduced into the lines. To combat this, [Nathan] created an RC filter to filter out all the high-frequency noise picked up by his sensor. Following the RC filter, he added in some code to handle the debounce of the sensor, as the springs have some inherent noise in them. Thanks [Nathan] for sending in your resourceful hack; we love seeing the resourcefulness of reusing things already on hand for other purposes. Be sure to check out some of the other repurposed components we’ve featured.

Building A Trash Can Reverb

These days, if you want a reverb effect, you just dial up whatever software plugin most appeals to you and turn the dials to taste. However, [Something Physical] specialises in… physical things… and thus built a reverb the old fashioned way. Using a trashcan, of course.

The concept is simple enough—the method of operation is exactly the same as any old plate reverb. Audio is played through a speaker connected to the plate (or trashcan), causing it to vibrate. The sound is then picked up at another point on the plate (or trashcan) with some kind of microphonic pickups, amplified, and there you have your reverb signal.

Given it’s built around a piece of street furniture, [Something Physical] has dubbed this the Street-Verb. It uses a class D amp to drive a speaker with a bolt stuck to it. The bolt is then put in contact with the trashcan itself to transfer the vibration. A pair of piezo elements are used as the pickups, run through a preamps built with a humble BC109C transistor. Since there are two pickups, the Street-Verb is effectively a stereo reverb unit, though the input is only mono. [Something Physical] set up the speaker driver and pickups to be easily movable, and was able to test the device with all kinds of street furniture, like gates and street signs, but the trashcan ‘verb setup is by far the most compelling.

We’ve featured other plate reverb builds before, too, albeit less garbage-themed. Video after the break.

Continue reading “Building A Trash Can Reverb”

Neon Bulbs? They’re A Gas!

When you think of neon, you might think of neon signs or the tenth element, a noble gas. But there was a time when neon bulbs like the venerable NE-2 were the 555 of their day, with a seemingly endless number of clever circuits. What made this little device so versatile? And why do we see so few of them today?

Neon’s brilliant glow was noted when William Ramsay and Morris Travers discovered it in 1898. It would be 1910 before a practical lighting device using neon appeared. It was 1915 when the developer, Georges Claude, of Air Liquide fame, received a patent on the unique electrodes suitable for lighting and, thus, had a monopoly on the technology he sold through his company Claude Neon Lights.

However, Daniel Moore in 1917 developed a different kind of neon bulb while working for General Electric. These bulbs used coronal discharge to produce a red glow or, with argon, a blue glow. This was different enough to earn another patent, and neon bulbs found use primarily as indicator lamps before the advent of the LED. However, it would also find many other uses.

Continue reading “Neon Bulbs? They’re A Gas!”

End Of The Eternal September, As AOL Discontinues Dial-Up

If you used the internet at home a couple of decades or more ago, you’ll know the characteristic sound of a modem  connecting to its dial-up server. That noise is a thing of the past, as we long ago moved to fibre, DSL, or wireless providers that are always on. It’s a surprise then to read that AOL are discontinuing their dial-up service at the end of September this year, in part for the reminder that AOL are still a thing, and for the surprise that in 2025 they still operate a dial-up service.

There was a brief period in which instead of going online via the internet itself, the masses were offered online services through walled gardens of corporate content. Companies such as AOL and Compuserve bombarded consumers with floppies and CD-ROMs containing their software, and even Microsoft dipped a toe in the market with the original MSN service before famously pivoting the whole organisation in favour of the internet in mid 1995. Compuserve was absorbed by AOL, which morphed into the most popular consumer dial-up ISP over the rest of that decade. The dotcom boom saw them snapped up for an exorbitant price by Time Warner, only for the expected bonanza to never arrive, and by 2023 the AOL name was dropped from the parent company’s letterhead. Over the next decade it dwindled into something of an irrelevance, and is now owned by Yahoo! as a content and email portal. This dial-up service seems to have been the last gasp of its role as an ISP.

So the eternal September, so-called because the arrival of AOL users on Usenet felt like an everlasting version of the moment a fresh cadre of undergrads arrived in September, may at least in an AOL sense, finally be over. If you’re one of the estimated 0.2% of Americans still using a dial-up connection don’t despair, because there are a few other ISPs still (just) serving your needs.