The Sunspots Are Coming (Again)

There are a bunch of ways to estimate the age of a radio amateur, by the letters in their callsign, by their preferred choice of homebrewing technology, or sometimes by their operating style. One that perhaps doesn’t immediately come to mind is to count how many solar cycles they remember, and since the current cycle 25 is my fourth I guess I’ve seen a few. Cycle 25 is so far shaping up to be quite an active one especially of late, which popular media are describing as bombarding us with flares from a “sunspot archipelago” and the more measured tones of giving us warning of X-class flares heading in our direction, today!

Jean-Claude Roy, VP, Hydro Quebec
We wouldn’t be this guy for anything. From CBC’s coverage of the 1989 power outage.

As the technology for solar observation has increased in sophistication and the Internet has allowed anyone to follow the events above us as they unfold, the awareness of solar phenomena has shifted away from the relatively small numbers of astronomers and radio amateurs who would once have been eagerly awaiting a solar cycle to a wider audience. Ever since a particularly severe event in March 1989  during cycle 22 caused disruptions including the blackout of a significant part of Canada it’s been a periodic topic of mild doom in slow news moments. But what lies behind the reports of solar activity? Perhaps it’s time to take a look.

The solar cycle refers to the 11-year period of solar activity from a maximum of observed sunspots through a minimum to a new maximum. The sunspots are the visible evidence of the solar magnetic field changing its polarity, and appear as darker areas where there is a greater strength of magnetic flux in the sun’s photosphere. We refer to solar cycles by number with solar cycle 1 occurring in 1755 because that year represents the earliest cycle which can be found in modern astronomical observation data, but previous cycles have been deduced over millennia through dendrochronology, sediment analysis, isotope observations, and other methods. Continue reading “The Sunspots Are Coming (Again)”

Hackaday Podcast Episode 246: Bypassing Fingerprint Readers Is Easy, Killing Memory Chips Is Hard, Cell Phones Vs Sperm

It’s the week after Thanksgiving (for some of us) and if you’re sick of leftovers, you’re in luck as Elliot and Dan get together to discuss the freshest and best inter-holiday hacks. We’ll cue up the “Mission: Impossible” theme for a self-destructing flash drive with a surprising sense of self-preservation, listen in on ET only to find out it’s just a meteor, and look for interesting things to do with an old 3D printer. We’ll do a poking around a little in the basement at Tektronix, see how easy it is to spoof biometric security, and get into a love-hate relationship with both binary G-code and bowling balls with strings attached. What do you do with a box full of 18650s? Easy — make a huge PCB to balance them the slow way. Is your cell phone causing a population crisis? Is art real or AI? And what the heck is a cannibal CME? Tune in as we dive into all this and more.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Grab a copy for yourself if you want to listen offline.

Continue reading “Hackaday Podcast Episode 246: Bypassing Fingerprint Readers Is Easy, Killing Memory Chips Is Hard, Cell Phones Vs Sperm”

Bulked Up MHD Drive Makes Waves While Standing Still

Looking back through the archives, we actually haven’t seen much in the way of homebrew magnetohydrodynamic drives (MHDs) — which is somewhat surprising, as the core concept isn’t nearly as complicated as its syllable-laden name might indicate. You can see results with little more than a magnet, a couple of electrodes, and a bench power supply. The trick is turning these base components into something that might actually have practical value.

That’s where we find [Jay Bowles], who has gone down a bit of a MHD rabbit hole these last few months. His latest MHD unit is a considerable improvement over its predecessor by all practical metrics, and as an added bonus, really nails the look of a futuristic propulsion unit. Even though the all-electric thruster hasn’t gone on a mission to anywhere more exotic than a table-top aquarium, you could easily imagine a pair of them slung under some top secret stealth watercraft.

Continue reading “Bulked Up MHD Drive Makes Waves While Standing Still”

This Week In Security: Owncloud, NXP, 0-Days, And Fingerprints

We’re back! And while the column took a week off for Thanksgiving, the security world didn’t. The most pressing news is an issue in Owncloud, that is already under active exploitation.

The problem is a library that can be convinced to call phpinfo() and include the results in the page response. That function reveals a lot of information about the system Owncloud is running on, including environment variables. In something like a Docker deployment, those environment variables may contain system secrets like admin username and password among others.

Now, there is a bit of a wrinkle here. There is a public exploit, and according to research done by Greynoise Labs, that exploit does not actually work against default installs. This seems to describe the active exploitation attempts, but the researcher that originally found the issue has stated that there is a non-public exploit that does work on default installs. Stay tuned for this other shoe to drop, and update your Owncloud installs if you have them. Continue reading “This Week In Security: Owncloud, NXP, 0-Days, And Fingerprints”

Add Some Blinkenlights To Your Supercon Badge

We’re not sure what is more amazing here: the glow of the blinkenlights themselves, the tedium involved in creating it, or the fact that [makeTVee] soldered 280 microscopic WS2812 LEDs while at Supercon.

This hack began before the con when [makeTVee] designed the LED-diffusing frame in Fusion 360 and printed it in clear resin. Rather than solder the LEDs straight, the frame has 280 teeth that support each one at a 55° angle.

Not only does this look cool, it makes the bridging of DOUT to DIN much easier. That leaves GND and VCC to be painstakingly connected with 30 AWG wire. How, you might ask? With a little help from 3.5x magnifying glasses and the smallest soldering iron tip available, of course.

But that’s not all. Since 280 addressable LEDs need a lot of power, [makeTVee] also designed a holder for the LiPo battery pack that fits into the existing AA holders.

Want to see more awesome badge hacks? Check out the compendium.

A Few New Car Owners Will Join The 48V Future

Leaving aside all the annoying hype surrounding Tesla’s Cybertruck, there’s a little technical detail which might be of more interest to readers than the automotive behemoth itself. It’s one of very few vehicles on the road to eschew 12 volt electrics for not 24 volt, but 48 volt. This has been one of those automotive innovations promised as just around the corner for many years, and it seems finally we’ll see it in practice.

The reason that there’s nothing new in the prospect of moving on from 12 volt electrics has been brewing for decades now. A typical car has plenty of motorized gadgets from seat adjusters to sunroofs, as well as at least one heated windscreen or other surface. These devices take a lot of power, and at the lower voltage require significant current to operate. The 48 volt system will require much less in the way of copper to get the power where it’s needed, so the surprise is that we’ve not yet seen it in run-of-the-mill vehicles from the likes of Ford or Volkswagen.

What we’re guessing is that other manufacturers will be watching from the sidelines as to whether 48 volt electrics cause any problems for the Tesla, and it’s not impossible we could see it becoming the new hotness. There are many choice words we could say relating to the hype around Tesla and its supposed level of innovation, but it could be that this time they’ve really been first with something the whole industry will go for. If so we should rejoice, because it’s likely to push down the prices of 48 volt lithium-ion packs.

Header image: Mliu92, CC BY-SA 3.0.

Is Microsoft BASIC Hidden In This Educational Child’s Toy?

The VTech PreComputer 1000 is a rather ancient toy computer that was available in the distant misty past of 1988. It featured a keyboard and a variety of simple learning games, but does it also feature Microsoft BASIC? [Robin] of 8-Bit Show and Tell dove in to find out.

Officially, the PreComputer was programmable in a form of BASIC, referred to by VTech as PRE-BASIC V1.0. Given that the system has a Z80 CPU and there’s little information in the manual about this programming language, [Robin] was suspicious as to whether it was based on Microsoft BASIC-80. Thus, an examination was in order to figure out just how this BASIC implementation worked, and whether it shared anything with Microsoft’s own effort.

We won’t spoil the conclusions, but there are some strong commonalities between VTech’s BASIC and Microsoft’s version from this era. The variable names in particular are a strong hint as to what’s going on under the hood. The video is worth a watch for anyone that’s a fan of early microcomputer history, BASIC, or just the weird computer-like devices of yesteryear. We also love the idea that the PreComputer 1000 was actually quite a capable machine hiding behind a single-line LCD display.

Continue reading “Is Microsoft BASIC Hidden In This Educational Child’s Toy?”