Control Tricks For Tailsitters

An RC VTOL aircraft always makes for a compelling project, but ensuring the transition between hover and forward flight can be quite challenging. In the video after the break, [Nicholas Rehm] demystifies of the flight control algorithm required for a VTOL tailsitter.

Tailsitters are one of the simplest VTOL arrangements, the testbed here being a simple foam KF airfoil wing with two motors and two servo-controlled elevons. As with almost all his projects [Nicholas], uses of his open-source dRehmFlight flight controller to demonstrate the practical implementation of the control algorithm.

Three major factors that need to be simultaneously taken into account when transitioning a tailsitter VTOL. First off, yaw becomes roll, and vice versa. This implies that in hover mode, elevons have to move in opposite directions to control yaw; however, this same action will make it roll in forward flight. The same applies for differential thrust from motors — it controls roll in hover and yaw in forward flight. Nevertheless, this change of control scheme only works if the flight controller also alters its reference frame for “level” flight (i.e., flips forward 90°). As [Nicholas] demonstrates, failing to do so results in a quick and chaotic encounter with the ground.

With these adjustments made, the aircraft can transition to forward flight but will oscillate pitch-wise as it overcorrects while trying to maintain stable flight; this is due to PID gains – 3rd factor. The deflection required by control surfaces is much more aggressive during hover mode; thus PID gains need to be reduced during forward flight. A final improvement involves adding a brief delay when switching modes for smoother rotation.

For more interesting VTOL configurations, check out [Tom Stanton]’s RC V-22 Osprey, and this solar recharging trimotor

Continue reading “Control Tricks For Tailsitters”

A Spinning Egg For Your Thoughts

Brushless motors are fascinating devices that come in all sorts of shapes and sizes, but you’ve probably never seen one in the form of a free-spinning shiny metal egg. Created by [David Windestål], [Giacomo Di Muro], and [Chad Kapper], the Motion Zero is part top, part brushless motor, and fully mesmerizing. Tech overview video after the break.

Like the classic Tippe Top toy, an ovoid shape like this shiny metal egg will stand on its end if it’s spun fast enough. To do this, the team embedded magnets in the metal egg, effectively turning it into a rotor. An array of 4 PCB coils under a smooth concave surface serves as the stator. Because the egg is not held in position by a shaft, hall effect sensors were incorporated to determine the position of the egg, and properly control the state of the coils to keep it spinning.

Recognizing how easy it was to get lost in thought while staring at a shiny spinning egg, the rest of the device was designed with meditation in mind. The top cover is a block of aluminum machined with ripple patterns, with ball bearings that slide between the ripples as the control interface. Additional hall effect sensors on the PCB determine the position of the balls to adjust the rotation speed and shut-off timer. You can even choose to make the egg move around or remain in one position. The main controller is an ESP32 module, which reads all the hall effect sensors and controls the coils via motor drivers.

The Motion Zero has made its debut on Kickstarter and already exceeded its initial funding goal. We like the creators’ willingness to share the inner workings of a product that manages to transform a simple concept into a mesmerizing piece of engineering artistry.

We’ve seen a good bit of [David Windestål]’s has a fascination with weird tech over the years, like racing belt sanders, fire breathing waterfowl, tri and bicopters. He even built a prop anti-drone RF cannon for a movie.

Continue reading “A Spinning Egg For Your Thoughts”

Autonomous Racing Drones Are Starting To Beat Human Pilots

Even with all the technological advancements in recent years, autonomous systems have never been able to keep up with top-level human racing drone pilots. However, it looks like that gap has been closed with Swift – an autonomous system developed by the University of Zurich’s Robotics and Perception Group.

Previous research projects have come close, but they relied on optical motion capture settings in a tightly controlled environment. In contrast, Swift is completely independent of remote inputs and utilizes only an onboard computer, IMU, and camera for real-time for navigation and control. It does however require a pretrained machine learning model for the specific track, which maps the drone’s estimated position/velocity/orientation directly to control inputs. The details of how the system works is well explained in the video after the break.

The paper linked above contains a few more interesting details. Swift was able to win 60% of the time, and it’s lap times were significantly more consistent than those of the human pilots. While human pilots were often faster on certain sections of the course, Swift was faster overall. It picked more efficient trajectories over multiple gates, where the human pilots seemed to plan one gate in advance at most. On the other hand human pilots could recover quickly from a minor crash, where Swift did not include crash recovery.

The final results are impressive, especially given that all the processing and sensing comes from the drone. However, it still requires a well mapped track, so a human pilot should still come out on top given limited information about a new track. It would also be interesting to see how it handles large courses with gates that are much further apart.

Continue reading “Autonomous Racing Drones Are Starting To Beat Human Pilots”

Exploring The Tech Behind Concert LED Wristbands

LED wristbands are now a common feature of large arena concerts and events, with a variety of capabilities and technical implementations. In the video after the break, Wall Street Journal does a fascinating deep dive into these wearable light shows.

The three main control technologies are IR light, RF radios, and Bluetooth. The IR-controlled ones are the simplest, and we’ve covered a teardown, a reverse engineering effort and reflash of the Pixmob IR armbands.

Finally, we get a good behind-the-scenes look at how they are controlled. Using pan-tilt IR emitters mounted on lighting towers, the operators can sweep across the audience controlling color and light levels or activating pre-programmed sequences.

The full control setup for RF wristbands, with transmitter on the left.
The full control setup for RF wristbands, with transmitter on the left.

RF armbands have the simplest control setup, only requiring a single portable transmitter connected to a computer running the control software. It does however require some pre-planning for more complex light displays, to ensure each section of the audience is individually addressable.

The most advanced and expensive versions are handheld light sticks controlled via Bluetooth from an app on the users smartphone, and are popular at K-Pop concerts. Each device is linked to the users seat number, making them individually addressable and allowing the lighting operators to produce complex patterns, and even text, in the crowd.

While each of these devices is simple and underwhelming on its own, tens of thousands working together produce impressive effects and probably hide some hard-earned engineering experience.

Continue reading “Exploring The Tech Behind Concert LED Wristbands”

No Frills Autonomous Lawnmower Gets The Job Done

[Nathan] needed an autonomous mower to help on the farm, so he built his own without breaking the bank. It might not be the prettiest machine, but it’s been keeping his roads, fences and yard clear for over a year. In the video after the break, he gives a detailed breakdown of its build and function.

It’s built around a around a simple angle-iron frame with a normal internal combustion push mower at it’s core. 18″ bicycle-type wheels are mounted at each corner, each side driven by an e-bike motors via long bicycle chains. Nathan had to add some guards around his wheel sprockets to prevent the chains slipping of due to debris.

Al the electronics and the battery is simply mounted on top of the frame, away from the motors to avoid magnetic interference with the compass. The brain of the system is a Pixhawk autopilot with a GPS module running ArduPilot, a staple for most of the autonomous rovers, boats and aircraft we’ve seen. The control station is just a Windows laptop running Mission Planner, with a 900 MHz radio link for comms with the mower. [Nathan] also gives a overview of how he uses a spreadsheet to set up waypoints.

This lawnmower’s straightforward design and use of easy-to-find components make it an excellent source of inspiration for anyone looking to build their own functional machine.

Continue reading “No Frills Autonomous Lawnmower Gets The Job Done”

Victorian Train Tunnel Turned Test Track

Characterizing the aerodynamic performance of a vehicle usually requires a wind tunnel since it’s difficult to control all variables when actually driving. Unless you had some kind of perfectly straight, environmentally controlled, and precision-graded section of road, anyway. Turns out the Catesby Tunnel in the UK meets those requirements exactly, and [Tom Scott] recently got to take a tour of it.

The 2.7 kilometer (1.7 mile) long tunnel was constructed as a railway tunnel between 1895 and 1897, thanks to the estate owner objecting to the idea of “unsightly trains” crossing his property. The tunnel’s construction was precise even by modern standards, deviating only 3 mm from being perfectly straight along its entire length. It lay abandoned for many years until it was paved and converted into a test facility, opening in 2021.

To measure the speed without the luxury of GPS reception, a high-speed camera mounted inside a vehicle detects reflective tags mounted every 5 m along the tunnel’s wall. This provides accurate speed measurement down to 0.001 km/h. A pair of turntables are installed at the ends of the tunnel to avoid an Austin Powers multi-point turn (apparently that’s the technical term) when turning around inside the confined space.

Due to the overhead soil and sealed ends, the temperature in the tunnel only varies by 1 – 2 °C year round. This controlled environment makes the tunnel perfect for coastdown tests, where a vehicle accelerates to a designated speed and then is put into neutral and allowed to coast. By measuring the loss of speed across multiple runs, it’s possible to calculate the aerodynamic drag and friction on the wheels. Thanks to the repeatable nature of the tests, it was even possible to calculate the aerodynamic losses caused by [Tom]’s cameras mounted to the outside of the vehicle.

The Catesby Tunnel is an excellent example of repurposing old infrastructure for modern use. Some other examples we’ve seen include using coal mines and gold mines for geothermal energy.

Continue reading “Victorian Train Tunnel Turned Test Track”

The Most Ornate Birdbath You’ve Ever Seen

When one thinks of art, a birdbath may not be the first thing that comes to mind. However, there is no denying that the La Fontaine aux Oiseaux (The Bird Fountain) is a true work of art. This automaton, created by automaton maker [François Junod] in collaboration with 20 different workshops and craftsmen, represents thousands of hours of work and boasts a complex beauty that is both visible and hidden.The finished Bird Fountain, with all it's jewel encrusted exterior pieces

Commissioned by the Van Cleef & Arpels jewelry company, this purely mechanical display piece features a pair of jewel-encrusted birds that perform a little routine around the edge of the bath every hour. All the birds’ appendages move while bird song is added with the help of a whistle and bellows. The “water” is also mechanized, with a series of metal plates moving together to create ripple effects, while a water lily opens and closes and a dragonfly flutters above the surface.

The overall effect of this ridiculously over-the-top mechanical art piece is absolutely mesmerizing. Even if the bejeweled exterior isn’t quite your style, you can still appreciate its intricate workings thanks the video after the break giving us a peek at the development.

We’ve featured some of [François]’ other work before, which is equally impressive and displays the mechanics in all it’s glory. If you want to try your hand at making automatons, 3D printing is the perfect way to get started.

Continue reading “The Most Ornate Birdbath You’ve Ever Seen”