Say what you want about the wisdom of keeping a 50-year-old space mission going, but the dozen or so people still tasked with keeping the Voyager mission running are some major studs. That’s our conclusion anyway, after reading about the latest heroics that revived a set of thrusters on Voyager 1 that had been offline for over twenty years. The engineering aspects of this feat are interesting enough, but we’re more interested in the social engineering aspects of this exploit, which The Register goes into a bit. First of all, even though both Voyagers are long past their best-by dates, they are our only interstellar assets, and likely will be for centuries to come, or perhaps forever. Sure, the rigors of space travel and the ravages of time have slowly chipped away at what these machines can so, but while they’re still operating, they’re irreplaceable assets.
Author: Dan Maloney3366 Articles
Radio Apocalypse: Meteor Burst Communications
The world’s militaries have always been at the forefront of communications technology. From trumpets and drums to signal flags and semaphores, anything that allows a military commander to relay orders to troops in the field quickly or call for reinforcements was quickly seized upon and optimized. So once radio was invented, it’s little wonder how quickly military commanders capitalized on it for field communications.
Radiotelegraph systems began showing up as early as the First World War, but World War II was the first real radio war, with every belligerent taking full advantage of the latest radio technology. Chief among these developments was the ability of signals in the high-frequency (HF) bands to reflect off the ionosphere and propagate around the world, an important capability when prosecuting a global war.
But not long after, in the less kinetic but equally dangerous Cold War period, military planners began to see the need to move more information around than HF radio could support while still being able to do it over the horizon. What they needed was the higher bandwidth of the higher frequencies, but to somehow bend the signals around the curvature of the Earth. What they came up with was a fascinating application of practical physics: meteor burst communications.
Continue reading “Radio Apocalypse: Meteor Burst Communications”
Hackaday Links: May 11, 2025
Did artificial intelligence just jump the shark? Maybe so, and it came from the legal world of all places, with this report of an AI-generated victim impact statement. In an apparent first, the family of an Arizona man killed in a road rage incident in 2021 used AI to bring the victim back to life to testify during the sentencing phase of his killer’s trial. The video was created by the sister and brother-in-law of the 37-year-old victim using old photos and videos, and was quite well done, despite the normal uncanny valley stuff around lip-syncing that seems to be the fatal flaw for every deep-fake video we’ve seen so far. The victim’s beard is also strangely immobile, which we found off-putting.
Big Chemistry: Cement And Concrete
Not too long ago, I was searching for ideas for the next installment of the “Big Chemistry” series when I found an article that discussed the world’s most-produced chemicals. It was an interesting article, right up my alley, and helpfully contained a top-ten list that I could use as a crib sheet for future articles, at least for the ones I hadn’t covered already, like the Haber-Bosch process for ammonia.
Number one on the list surprised me, though: sulfuric acid. The article stated that it was far and away the most produced chemical in the world, with 36 million tons produced every year in the United States alone, out of something like 265 million tons a year globally. It’s used in a vast number of industrial processes, and pretty much everywhere you need something cleaned or dissolved or oxidized, you’ll find sulfuric acid.
Staggering numbers, to be sure, but is it really the most produced chemical on Earth? I’d argue not by a long shot, when there’s a chemical that we make 4.4 billion tons of every year: Portland cement. It might not seem like a chemical in the traditional sense of the word, but once you get a look at what it takes to make the stuff, how finely tuned it can be for specific uses, and how when mixed with sand, gravel, and water it becomes the stuff that holds our world together, you might agree that cement and concrete fit the bill of “Big Chemistry.”
Hackaday Links: May 4, 2025
By now, you’ve probably heard about Kosmos 482, a Soviet probe destined for Venus in 1972 that fell a bit short of the mark and stayed in Earth orbit for the last 53 years. Soon enough, though, the lander will make its fiery return; exactly where and when remain a mystery, but it should be sometime in the coming week. We talked about the return of Kosmos briefly on this week’s podcast and even joked a bit about how cool it would be if the parachute that would have been used for the descent to Venus had somehow deployed over its half-century in space. We might have been onto something, as astrophotographer Ralf Vanderburgh has taken some pictures of the spacecraft that seem to show a structure connected to and trailing behind it. The chute is probably in pretty bad shape after 50 years of UV torture, but how cool is that?
Parachute or not, chances are good that the 495-kilogram spacecraft, built to not only land on Venus but to survive the heat, pressure, and corrosive effects of the hellish planet’s atmosphere, will at least partially survive reentry into Earth’s more welcoming environs. That’s a good news, bad news thing: good news that we might be able to recover a priceless artifact of late-Cold War space technology, bad news to anyone on the surface near where this thing lands. If Kosmos 482 does manage to do some damage, it won’t be the first time. Shortly after launch, pieces of titanium rained down on New Zealand after the probe’s booster failed to send it on its way to Venus, damaging crops and starting some fires. The Soviets, ever secretive about their space exploits until they could claim complete success, disavowed the debris and denied responsibility for it. That made the farmers whose fields they fell in the rightful owners, which is also pretty cool. We doubt that the long-lost Kosmos lander will get the same treatment, but it would be nice if it did.
Hackaday Podcast Episode 319: Experimental Archaeology, Demoscene Oscilloscope Music, And Electronic Memories
It’s the podcast so nice we recorded it twice! Despite some technical difficulties (note to self: press the record button significantly before recording the outro), Elliot and Dan were able to soldier through our rundown of the week’s top hacks.
We kicked things off with a roundup of virtual keyboards for the alternate reality crowd, which begged the question of why you’d even need such a thing. We also looked at a couple of cool demoscene-adjacent projects, such as the ultimate in oscilloscope music and a hybrid knob/jack for eurorack synth modules.
We dialed the Wayback Machine into antiquity to take a look at Clickspring’s take on the origins of precision machining; spoiler alert — you can make gas-tight concentric brass tubing using a bow-driven lathe. There’s a squishy pneumatic robot gripper, an MQTT-enabled random number generator, a feline-friendly digital stethoscope, and a typewriter that’ll make you Dymo label maker jealous.
We’ll also mourn the demise of electronics magazines and ponder how your favorite website fills that gap, and learn why it’s really hard to keep open-source software lean and clean. Short answer: because it’s made by people.
X-Rays From An Overdriven Magnetron
If you say that you’re “nuking” something, pretty much everyone will know that you mean you’re heating something in the microwave. It’s technically incorrect, of course, as the magnetron inside the oven emits only non-ionizing radiation, and is completely incapable of generating ionizing radiation such as X-rays. Right?
Perhaps not, as these experiments with an overdriven magnetron suggest. First off, this is really something you shouldn’t try; aside from the obvious hazards that attend any attempt to generate ionizing radiation, there are risks aplenty here. First of all, modifying magnetrons as [SciTubeHD] did here is risky thanks to the toxic beryllium they contain, and the power supply he used, which features a DIY flyback transformer we recently featured, generates potentially dangerous voltages. You’ve been warned.
For the experiment, [SciTubeHD] stripped the magnets off a magnetron and connected his 40-kV AC power supply between the filament and the metal case of the tube. We’re not completely clear to us how this creates X-rays, but it appears to do so given the distinctive glow given off by an intensifying screen harvested from an old medical X-ray film cassette. The light is faint, but there’s enough to see the shadows of metallic objects like keys and PCBs positioned between the tube and the intensifying screen.
Are there any practical applications for this? Probably not, especially considering the potential risks. But it’s still pretty cool, and we’re suitably impressed that magnetrons can be repurposed like this.




