X-Ray Defeats Letterlocking — Unfolds And Reads Letter Sealed Since 1697

Over recent years we’ve been treated to a series of fascinating advances in the world of x-ray imaging, as  researchers have developed their x-ray microtomography techniques and equipment to the point at which they can probe and then computationally reconstruct written material within objects such as letters or scrolls in museum collections whose value or fragility means they can’t be opened and read conventionally. There is more to this challenge than simply extracting the writing though, in addition to detecting the ink the researchers also have to unpick the structure of whatever it was written upon. A particular challenge comes from letterpackets, the art of folding a letter into its own envelope, and a newly-published Nature Communications paper details work from a team of academics in the USA, the UK, and the Netherlands in tackling it.

Letterpackets were more than a practical method of packaging a missive for the mail, they also had a security function often called Letterlocking. A packet would be folded in such a way as to ensure it was impossible to open without tearing or otherwise damaging the paper, and their structure is of especial interest to historians. The researchers had a unique resource with which to work; the Brienne collection is a trunk full of undeliverable mail amassed by a 17th century postmaster couple in Den Haag in the Netherlands, and now in the possession of the Beeld en Geluid museum in that city. In it were a cache of letters including 577 never-opened letterpackets, and the x-ray technique promised a means to analyse these without compromising them.

A letter imaged using the technique.
A letter imaged using the technique.

The researchers have developed an entirely computational technique for the virtual unfolding process. Starting with a 3D volumetric x-ray scan of the unopened packet they then identify the various layers of paper and the bright spots which denote the ink. Their algorithm has to cope with areas in which two or more layers are tightly in contact, for example when multiple levels are folded, and then unpick the resulting 3-dimensional mesh into a 2-dimensional sheet. Their process for mapping the crease pattern involves applying a colour map representing the mean curve radius at a given point. The final section of the paper looks at the multiple different methods of letterlocking, and attempts to categorise them all including a security rating for each. It’s evident that this could be a highly personalised process, indeed they give as an example a letter from Mary Queen of Scots that used an intricate spiral folding technique to identify its sender.

It’s clear that this technique will reveal many more fascinating historical documents as it is both refined and extended across the many more collections of further artefacts that have lain waiting for it. As they say, individual letters do not necessarily contain earth-shattering historical discoveries, but taken together they shed an important light on the social history of past centuries.

One of the names on the paper is [David Mills], whose work has featured here before.

A New Open-Source Farming Robot Takes Shape

The world of automated farming may be an unglamorous one to those not invested in its attractions, but like the robots themselves that quietly get on in the background with tending crops, those who follow that path spend many seasons refining their designs. The Acorn is a newly-open-sourced robot from Twisted Fields, a Californian research farm, and it provides a fascinating look at the progress of a farming robot design from germination onwards.

The Acorn is not a CNC gantry for small intensive gardens in the manner of designs such as the Farmbot, instead it’s an autonomous solar-powered rover intended for larger farms which will cruise the fields continuously tending to the plants in its patch. It’s a work in progress, so what we see is the completed rover with the tools and machine vision to follow. It pursues the course of a low-cost lightweight platform, an aluminium chassis surmounted by the solar panel, with mountain bike front fork derived wheels at each corner. It has four wheel drive and four wheel steering, meaning that it can traverse the roughest of farmland. We can see its progress since a 2019 prototype, and while it seems as slow as the seasons themselves to mature, we can see that the final version could be a significantly useful machine on a small farm.

It’s not the first autonomous farming robot we’ve seen over the years, as for example this slightly more robust Australian model. We’re guessing that this is the direction autonomous farming is likely to take, with the more traditional tractor-based machinery projected by some manufacturers taking on repetitive loading and hauling roles.

Continue reading “A New Open-Source Farming Robot Takes Shape”

What Uses More Power Than Argentina But Doesn’t Dance The Tango?

There’s been a constant over the last few weeks’ news, thanks to Elon Musk we’re in another Bitcoin hype cycle. The cryptocurrency soared after the billionaire endorsed it, at one point coming close to $60k, before falling back to its current position at time of writing of around $47k. The usual tide of cryptocurrency enthusiasts high on their Kool-Aid hailed the dawn of their new tomorrow, while a fresh cesspool of cryptocurrency scam emails and social media posts lapped around the recesses of the Internet.

This Time It’s Different!

The worst phrase that anyone can normally say about a financial bubble is the dreaded phrase “This time it’s different“, but there is something different about this Bitcoin hype cycle. It’s usual to hear criticism of Bitcoin for its volatility or its sometime association with shady deals, but what’s different this time is that the primary criticism is of its environmental credentials. The Bitcoin network, we are told, uses more electricity than the Netherlands, more than Argentina, and in an age where global warming has started to exert an uncomfortable influence over our lives, we can’t afford such extravagance and the emissions associated with them.

Here at Hackaday we are more concerned with figures than arguments over the future of currency, so the angle we take away from it all lies with those power stats. How much energy does Argentina use, and is the claim about Bitcoin credible?

Continue reading “What Uses More Power Than Argentina But Doesn’t Dance The Tango?”

Fixing The Only Thing That’s Slow About Grand Theft Auto V

The driving, crime, and general mayhem game Grand Theft Auto V is something of a phenomenon that has lasted for the last seven or more years. Whether following the in-game missions, driving around like a hooligan for fun or performing crazy stunts, the depth of detail in its landscapes and the continual improvements to gameplay that have arrived over the years have assured it a massive following across multiple platforms. The game is not without its problems though, one of which is an unreasonably long loading time for its online version. This annoyed [T0st] to the extent that it was worth the effort of looking under the hood to find out where the problem lay.

It was evident that for PC users the effect varied depending on the hardware present. Furthermore AMD processors seemed worse-hit than Intel ones, and indeed they found an entire core maxed out by a couple of processes during the wait. Some diagnostics and disassembly led the trail to some string processing code which was identified as a JSON parser. This was not simply parsing the JSON but also performing a check for token uniqueness in an extremely inefficient manner, causing the whole process to be extremely slow. Sone nifty patching in a DLL containing a much more efficient function with a cache for unique values saved the day, and delivered an impressive 70% speed-up. It’s to be hoped that the game’s developers will take note, and a future GTA V update will deliver a fix.

Driving a car from a third-person viewpoint in a game like GTA V is a hoot. In real life though, not so much.

Thanks [Thanatos Erberus] for the tip.

An Homage To Daft Punk In Fan-Made Helmets Through The Years.

It’s with sadness that we note the end to an end. The French dance music duo Daft Punk have split up, announced in a video that’s has already clocked 22 million views.The band have inspired hardware geeks across the world not just with their music but the way they present themselves. A perennial project has been to replicate in some way their iconic robot helmets.

Ben Heck's 2009 take on the helmet
Harrison Krix’s 2009 take on Guy-Manuel de Homem-Christo’s helmet.

The artists themselves have been reticent about the exact technology that powers their headgear, but while this is a source of endless mystery and speculation to the music press it’s safe to assume from our perspective that their designers have the same parts at their disposal as we have. Microcontrollers, EL wire, and LEDs are universal, so the challenge lies in artistic expression with the helmet design rather than in making the effects themselves. We’ve reached into the archives for a bit of Daft Punk helmet nostalgia, so stick on Harder Better Faster and lets take a look at them, er, one more time.

Continue reading “An Homage To Daft Punk In Fan-Made Helmets Through The Years.”

A FLIR One Pro Sees Again, Thanks To Some Nifty Soldering

The Flir One Pro is a thermal camera that attaches to a mobile phone with a USB-C plug. [Gigawatts] has one, and unfortunately managed to drop it, breaking the USB-C plug and rendering the device useless. The plug is separate from the main PCB, an assembly of its own with a flexible cable, but FLIR are not interested in supplying spares. What was the answer? Wire data lines into the device’s charging port, of course!

The One Pro has its own battery, and to avoid draining the phone it is charged through another USB connection, this time a socket. The data lines aren’t connected, which necessitated some very careful soldering of wire-wrap wire to an SMD package to fix. When completed and secured with glue the resulting camera works with a USB-C cable, and there are plans to mount a tripod thread receptacle in the space left by the USB-C plug.

It’s disappointing that Flir choose not to supply replacements for the USB-C plug assembly, seemingly they see the device as a throwaway piece of consumer electronics rather than the expensive instrument that it is. This modification should at lease allow some unfortunate One Pro owners to revive their dead cameras.

If you’re curious about the Flir One series of cameras, perhaps you’d like to read our review.

There’s Only One Way To Play A Star Wars Game

Most computer and console games have a variety of different control schemes depending on the controller peripheral the player has to hand. For Star Wars games the fight scenes may be playable with a gamepad, but perhaps that leaves a little to desired in the realism department.  In that case, [Leonardo Moreno] has the solution, in the form of a motion sensing light sabre for gaming via gesture control.

The first part of any light sabre project is the sabre itself, and for this he uses soft transparent PVC tubing. This might seem an insubstantial choice, but makes sense when the possibility of hitting an expensive television or gamers monitor with it is considered. Up the pipe goes a piece of LED strip, and onto it a hilt containing an Arduino and an MPU6050 gyroscope sensor. The physical controls come courtesy of a small analogue joystick and a trigger fashioned from a wooden clothes pin. The result may be a little rough and ready, but it’s undeniably a light sabre. Full instructions and software can be found at the link.

Light sabres have been a perennial build, but few have captured the original better than this laser based one.