A Look At 3D Printed Professional LED Signage

Customer perception is everything when you’re running a business, particularly in retail. High-quality signage can go a long way into creating a good impression in this respect. [king process] decided to show us how professional-grade LED signage is made in a Korean shop that specializes in the work.

The signs we’re shown are custom builds that are matched to the shape of a company’s logo. No rectangular printed lightboxes here, this is fully custom stuff. To that end, a 3D printer is the perfect tool for the job, as it lets the shop produce signs in any shape desired with no need for custom tooling.

The 3D printers that build up the signs have seriously large build volumes, though more so in the X and Y dimensions rather than the Z. We see a whole fleet of printers working away to allow multiple signs to be produced quickly. The first step is to produce the outline of a sign, which serves as a base for the build. Cavities in the sign are then filled with a translucent silicone solution to act as diffuser material. Once cured, these various sections are colored by hand as required. LED strips are then installed on a backing plate to illuminate the sections of the sign.

The final result is a sign with clean, bright glowing lines. It’s vaguely reminiscent of a neon sign, but without any of the limitations of the glass tubes influencing how it looks. It’s also neat to see the techniques a professional shop uses to make things right the first time, without dinging or marring any of the parts along the way.

Indeed, it seems the classical neon sign is, these days, bested by a variety of alternative technologies.

Continue reading “A Look At 3D Printed Professional LED Signage”

A Hydroelectric Dam, Built Out Of LEGO

Hydroelectric dams are usually major infrastructure projects that costs tens of millions of dollars to construct. But they don’t have to be — you can build your own at home, using LEGO, as [Build it with Bricks] demonstrates!

The build is set up in an aquarium with a pump, which serves to simulate flow through a river system. The LEGO dam is installed in the middle of the aquarium, blocking the flow. It has a sluice gate in the lower section to feed water to a turbine for power generation. The gate is moved via a rack and pinion. It’s driven by a LEGO motor on a long shaft to keep it a safe distance from the wet stuff. The dam also gets a spillway to allow for overflow to be handled elegantly. Meanwhile, a second motor acts as a generator, fitted with a fairly basic turbine.

Hilariously, the first build fails spectacularly as the hydrostatic pressure of the water destroys the LEGO wall. A wider base and some reinforcements help solve the problem. There’s a better turbine, too.  It’s all pretty leaky, but LEGO was never designed to be water tight. As you might imagine, it doesn’t generate a lot of power, but it’s enough to just barely light some LEDs.

It’s a fun way to learn about hydroelectric power, even if it’s not making major amounts of electricity. Video after the break.

Continue reading “A Hydroelectric Dam, Built Out Of LEGO”

Building A Cable-Driven Delta Printer

Most of us have played with a Cartesian-style 3D printer. Maybe you’ve even built a rigid delta. In this case, [Diffraction Limited] decided to a little further away from the norm with a cable-based delta design.

This delta design uses direct cable drives to control the end effector, with preloading rods effectively decoupling the preload from the drive force. Thus, the motors only have to provide enough power to move the end effector around without fighting the tension in the cables. The end effector is nice and light, because the motors remain stationary. With lightly-loaded motors and a lightweight effector, rapid accelerations are possible for faster printing. The video does a great job of explaining how the winch-based actuation system works to move the mechanism quickly and accurately. It’s a pleasure to watch the delta robot bouncing around at high speed as it executes a print.

The video notes that it was a successful build, though difficult to calibrate. The strings also wore out regularly. The truth of the matter is, delta printers are just more fun to watch at work than their less-controversial Cartesian cousins. Video after the break.

Continue reading “Building A Cable-Driven Delta Printer”

Building A Mouse That’s Also A Computer

Once upon a time, a computer was a big metal brick of a thing that sat on or next to your desk. Now, it’s possible to fit decent computing power into a board the size of a stick of gum. [Electo] took advantage of this to build an entire computer into a mouse form factor.

[Electo] had tried this before years ago, and built something pretty sloppy. This time, he wanted to build a version that had an actually-legible screen and fit better in the hand. He whipped up a giant 3D-printed mouse housing, and fitted the sensor board from an optical mouse inside. That was hooked up to an Intel NUC PC that fits inside the housing. A small LCD screen was then installed on a rack system that lets it pop out the front of the mouse. Data entry is via a laser keyboard mounted in the side of the mouse.

Of course, being based on an Intel NUC means the thing was the size of a couple of phonebooks. That’s not really a mouse. Starting again, he reworked the build around a tiny palm-sized computer running Windows 11. It was stripped out of its case and wedged into a compact 3D-printed housing only slightly larger than a typical mouse. It has a keyboard of a sort – really it’s just an array of buttons covering W, A, S, D, and a couple others for playing simple games. Amazingly, it’ll even run Minecraft or Fortnight if you really want to try and squint at that tiny screen.

Having a computer with a screen that moves every time you move the mouse isn’t ideal. At the same time, it’s fun to see someone explore a fun (and silly) form factor. It’s interesting to see how the project works compared to the original version from a few years ago. Video after the break.

Continue reading “Building A Mouse That’s Also A Computer”

You Can Use A Crappy Mixer As A Neat Synthesizer

[Simon the Magpie] found himself in possession of a Behringer mixer that turned up in someone’s garbage. They’re not always the most well-regarded mixers, but [Simon] saw an opportunity to do something a bit different with it. He decided to show us all how you can use a mixer as a synthesizer.

[Simon] actually picked up the “no-input” technique from [Andreij Rublev] and decided to try it out on his own equipment. The basic idea is to use feedback through the mixer to generate tones. To create a feedback loop, connect an auxiliary output on the mixer to one of the mixer’s input channels. The gain on the channel is then increased on the channel to create a great deal of feedback. The mixer’s output is then gently turned up, along with the volume on the channel that has formed the feedback loop. If you’ve hooked things up correctly, you should have some kind of tone feedbacking through the mixer. Want to change the pitch? Easy – just use the mixer’s EQ pots!

It’s pretty easy to get some wild spacey sounds going. Get creative and you can make some crunchy sounds or weird repeating tones if you play with the mixer’s built in effects. Plus, the benefit of a mixer is that it has multiple channels. You can create more feedback loops using the additional channels if you have enough auxiliary sends for the job. Stack them up or weave them together and you can get some wild modulation going.

Who needs a modular synth when you can do all this with a four channel mixer and some cables? Video after the break.

Continue reading “You Can Use A Crappy Mixer As A Neat Synthesizer”

Could Moon Mining Spoil Its Untouched Grandeur And Science Value?

It’s 2024. NASA’s Artemis program is in full swing, and we’re hoping to get back to the surface of the Moon real soon. Astronauts haven’t walked on the beloved sky rock since 1972! A human landing was scheduled for 2025, which has now been pushed back to 2026, and we’re all getting a bit antsy about it. Last time we wanted to go, it only took 8 years!

Now, somehow, it’s harder, but NASA also has its sights set higher. It no longer wants to just toddle about the Moon for a bit to wave at the TV cameras. This time, there’s talk of establishing permanent bases on the Moon, and actually doing useful work, like mining. It’s a tantalizing thought, but what does this mean for the sanctity of one of the last pieces of real estate yet to be spoilt by humans? Researchers are already arguing that we need to move to protect this precious, unique environment.

Continue reading “Could Moon Mining Spoil Its Untouched Grandeur And Science Value?”

Could Solar-Powered Airships Offer Cleaner Travel?

The blimp, the airship, the dirigible. Whatever you call them, you probably don’t find yourself thinking about them too often. They were an easy way to get airborne, predating the invention of the airplane by decades. And yet, they suffered—they were too slow, too cumbersome, and often too dangerous to compete once conventional planes hit the scene.

And yet! Here you are reading about airships once more, because some people aren’t giving up on this most hilarious manner of air travel. Yes, it’s 2024, and airship projects continue apace even in the face of the overwhelming superiority of the airplane.

Continue reading “Could Solar-Powered Airships Offer Cleaner Travel?”