An illustration of jellyfish swimming in the ocean by Rebecca Konte. The jellyfish are wearing cones on their "heads" to streamline their swimming that contain some sort of electronics inside.

The Six Million Dollar Jellyfish

What if you could rebuild a jellyfish: better, stronger, faster than it was before? Caltech now has the technology to build bionic jellyfish.

Studying the ocean given its influence on the rest of the climate is an important scientific task, but the wild pressure differences as you descend into the eternal darkness make it a non-trivial engineering problem. While we’ve sent people to the the deepest parts of the ocean, submersibles are much too expensive and risky to use for widespread data acquisition.

The researchers found in previous work that making a cyborg jellyfish was more effective than biomimetic jellyfish robots, and have now given the “biohybrid robotic jellyfish” a 3D-printed, neutrally buoyant, swimming cap. In combination with the previously-developed “pacemaker,” these cyborg jellyfish can explore the ocean (in a straight line) at 4.5x the speed of a conventional moon jelly while carrying a scientific payload. Future work hopes to make them steerable like the well-known robo-cockroaches.

If you’re interested in some other attempts to explore Earth’s oceans, how about drift buoys, an Open CTD, or an Open ROV? Just don’t forget to keep the noise down!

Continue reading “The Six Million Dollar Jellyfish”

A map of the world with continents in light grey and countries outlined in dark grey. A nuber of yellow and grey circles with cartoon factories on them are connected with curved lines reminiscent of airplane flight paths. The lines have seemingly-arbitrary binary ones and zeros next to them. All of the grey factories are in the Americas, likely since IoP is currently focused on Africa and Europe.

Internet Of Production Alliance Wants You To Think Globally, Make Locally

With the proliferation of digital fabrication tools, many feel the future of manufacturing is distributed. It would certainly be welcome after the pandemic-induced supply chain kerfuffles from toilet paper to Raspberry Pis. The Internet of Production Alliance (IoP) is designing standards to smooth this transition. [via Solarpunk Presents]

IoP was founded in 2016 to build the infrastructure necessary to move toward a global supply chain based on local production of goods from a global database of designs instead of the current centralized model of production with closed designs. Some might identify this decentralization as part of the Fourth Industrial Revolution. They currently have developed two standards, Open Know-Where [PDF] and Open Know-How.

Open Know-Where is designed to help locate makerspaces, FabLabs, and other spaces with the tools and materials necessary to build a thing. The sort of data collected here is broken down in to five categories: manufacturing facility, people, location, equipment, and materials. Continue reading “Internet Of Production Alliance Wants You To Think Globally, Make Locally”

A cat sits on a dark green mid-century modern bench next to a cat-sized black piano. A black bowl sits beneath the piano to catch food. An abstract green, blue, and tan picture in a black frame is on the wall above the cat and a black bar stool can be seen around the corner. It looks like the sort of photo you'd see on Instagram or in an interior design magazine.

Piano Feeder Gets Pets Playing For Their Supper

If you ever watched a video of Piano Cat and wondered if your cat could learn to play, then [Sebastian Sokołowski] has a possible solution with this combination piano tutor and cat feeder.

Starting with a CNC cut MDF enclosure, [Sokołowski] developed a cat feeder that would fit in the rear of the piano. It had to be reliable, consistent, and easy to disassemble. He walks us through his testing for each of these features and says the feeder was the most difficult part of the project to develop due to the propensity of pet feeder mechanisms to jam.

A custom PCB takes the key presses from the piano (with functional black keys) and outputs the sound from a speaker in the back. Lessons progress through increasing difficulty automatically, encouraging your cat to learn what the different keys can do. Food is dispensed after a performance or on a schedule set through the accompanying smartphone app. All the files are available if you want to build your own, but there is a wait list available if you want a completed version to give to less technically-inclined cat staff.

We’re certainly no stranger to the creatures that rule the internet here at Hackaday, having featured other cat feeders, new research into spaying cats, or even open source robo-cats.

Continue reading “Piano Feeder Gets Pets Playing For Their Supper”

A beige computer with a CRT monitor. A black LCD sits atop a stack of 3 devices next to it and a set of power control switches (the orange light up kind). There appear to be 8 floppy drives available.

Flux Is Your Friend For Archiving Old Floppy Disks

Nothing screams retrocomputing quite like floppy drives. If you want to preserve some of your favorite computing memories like that paper you wrote about the joys of the Information Superhighway, [Shelby] from Tech Tangents has a detailed dive into how to preserve the bits off those old floppies.

Back in the day, the best way to get data off an old drive was to fire up an old computer. Now, with new devices specifically designed for harvesting data off of old floppies like the KryoFlux and the Greaseweazle, you can get the full flux map of the disk. With this, you can build binary image files and actually pull files and duplicate disks from vintage systems.

Some systems, like PCs, Macs, and Commodores are well-understood and are simple to preserve, while others take quite a bit of work to figure out. [Shelby] walks us through some of the more common disk formats as well as some real oddballs like Microsoft Adventure which features inconsistent formatting as a form of early DRM (boo).

Want to do your own preservation? We’ve covered a couple different methods in the past.

Continue reading “Flux Is Your Friend For Archiving Old Floppy Disks”

You Got Fusion In My Coal Plant!

While coal was predominant in the past for energy generation, plants are shutting down worldwide to improve air quality and because they aren’t cost-competitive. It’s possible that idle infrastructure could be put to good use with fusion instead.

While we’ve yet to see a fusion reactor capable of generating electricity, Type One Energy, the Tennessee Valley Authority, and Oak Ridge National Lab have announced they’re evaluating the recently-closed Bull Run Fossil Plant in Oak Ridge, Tennessee as a site for a nuclear fusion reactor. One of the main advantages for siting any new generation source on top of an old one is the ability to reuse the existing transmission infrastructure to get any generated power to the grid. Overhead satellite view of a coal-fired power plant next to a heat map showing the suitability of terrain in the region for siting a nuclear power plant

Don’t get too excited as it sounds like this is yet another prototype reactor that will be the proof-of-concept before construction of a reactor that can produce commercial power for the grid. While ambitious, the amount of investment by government entities like the Department of Energy and the state of Tennessee (>$55 million) seems to indicate they aren’t just blowing smoke.

If any of this seems familiar, you might be thinking of the Department of Energy’s report on placing advanced fission reactors on old coal sites. A little fuzzy on the difference between a stellarator and a tokamak? Checkout this explainer on some of the different ways to (non-explosively) do fusion on Earth.

A man standing next to a log holds a wooden mallet and a grey froe with a wooden handle. The froe's long straight blade sits atop the end of the log. Several cuts radiate out from the center of the log going through the length of the wood.

Making Wooden Shingles With Hand Tools

While they have mostly been replaced with other roofing technologies, wooden shingles have a certain rustic charm. If you’re curious about how to make them by hand, [Harry Rogers] takes us through his friend [John] making some.

There are two primary means of splitting a log for making shingles (or shakes). The first is radial, like one would cut a pie, and the other is lateral, with all the cuts in the same orientation. Using a froe, the log is split in progressively smaller halves to control the way the grain splits down the length of the log and minimize waste. Larger logs result in less waste and lend themselves to the radial method, while smaller logs must be cut laterally. Laterally cut shingles have a higher propensity for warping and other issues, but will work when larger logs are not available.

Once the pieces are split out of the log, they are trimmed with an axe, including removing the outer sapwood which is the main attractant for bugs and other creatures that might try eating your roof. Once down to approximately the right dimensions, the shingle is then smoothed out on a shave horse with a draw knife. Interestingly, the hand-made shingles have a longer lifespan than those sawn since the process works more with the grain of the wood and introduces fewer opportunities for water to seep into the shingles.

If you’re looking for something more solarpunk and less cottagecore for your house, maybe try a green solar roof, and if you’ve got a glass roof, try cleaning it with the Grawler.

Continue reading “Making Wooden Shingles With Hand Tools”

A large array of triangles and colored lines showing the folding pattern of the origami computer

Turing Complete Origami

Origami can be an interesting starting point for a project, but we weren’t expecting [Thomas C. Hull] and [Inna Zakharevich]’s Turing complete origami computer.

Starting with the constraint of flat origami (the paper folds back on top of itself), the researchers designed a system that could replicate all the functionality of the previously-proven Turing complete Rule 110 automaton. The researchers walk us through the construction of AND, OR, NAND, NOR, and NOT gates via paper as well as the various “wires” and “gadgets” that connect the operators or filter out noise.

Everything ends up a large mess of triangles and hexagons with optional creases to make the whole thing work. While the origami computer probably won’t be helping you slice 3D prints anytime soon, much like a Magic computer, the engineering and math involved may prove useful in other applications.

We’re no strangers to origami here, having covered origami machines, medical robots, or using a desktop vinyl cutter to pre-score your project.