A Word Clock You Don’t Have To Actually Build To Enjoy

The great thing about word clocks is that while they all follow the same principle of spelling out the time for you, they come in so many shapes, sizes, and other variations, you have plenty of options to build one yourself. No matter if your craft of choice involves woodworking, laser cutting, PCB design, or nothing physical at all. For [Yasa], it was learning 3D modeling combined with a little trip down memory lane that led him to create a fully functional word clock as a rendered animation in Blender.

Inspired by the picture of a commercially available word clock, [Yasa] remembered the fun he had back in 2012 when he made a Turkish version for the Pebble watch, and decided to recreate that picture in Blender. But simply copying an image is of course a bit boring, so he turned it into an actual, functioning clock by essentially emulating a matrix of individually addressable LEDs using a custom texture he maps the current time to it. And since the original image had the clock positioned by a window, he figured he should have the sun move along with the time as well, to give it an even more realistic feel.

Of course, having the sun situation in real-time all year round would be a bit difficult to render, so [Yasa] choose to base the scene on the sun during spring equinox in his hometown Stockholm instead. You can see the actual clock showing your local time (or whichever time / time zone you set your device to) on his website, and his write-up is definitely a fun read you should check out if you’re interested in all the details or 3D modeling in general — or just to have a look at a time lapse of the clock itself. As he states, the general concept could be also used to model other word clocks, so who knows, maybe we will see this acrylic version or a PCB version of it in the future.

Travel Globe Spins You Around Memory Lane

We all have our own preferences when it comes to travel souvenirs — that little something that brings back the memories and feelings of a past holiday every time we look at it, whether it’s the cliché fridge magnet, some local speciality, or just the collection of photos we took. But then there are those journeys that can’t be summarized into a single item and may require a bit more creativity. For [Jonathan], it was last year’s trip around the world that took him and [Maria] to locations all over Europe, Asia, and Oceania, and he found a great way to remember it: an interactive, laser-cut travel globe displaying all the places they went to.

Building a sphere is of course a bit tricky with a laser cutter, so [Jonathan] went for the icosahedron shaped Dymaxion map projection (think of a large d20 dice) and burnt the world onto it. Inside the globe is an ESP8266, an MPU-6050 IMU, and a bunch of LEDs to light up the travel locations using the WLED library. Taking the data from the IMU, he customized the WLED library to determine which way the globe is positioned, and highlights the top-facing location in a different color.

While that would already make a nice souvenir on its own, [Jonathan] didn’t stop here. Using Google’s My Maps service, which lets you create custom maps with own points of interest and have for example photos attached to them, the ESP8266 hosts the travel map also as a web page. Feeding the IMU data to the JavaScript code that’s handling the map API, the globe itself now doubles as an input device to control the virtual map. So whenever the globe is physically rotated to highlight a certain location, the web page’s map is focused to that same location and shows randomly the pictures they have taken there. Check out the video below to see it all in action.

This is a great way to reminisce about a memorable journey even years down the road, and while it may not be flexible to extend, it seems like the kind of trip that deserves a standalone device anyway. Plus, the Dymaxion map is definitely an interesting projection — so here’a a foldable one, just because. And If you like tracking things on a globe, here’s one that shows the location of the ISS.

Continue reading “Travel Globe Spins You Around Memory Lane”

PHONK – A Hacker’s Fun Shortcut To Android Programming

As the common myth goes, the average human utilizes only about 10% of the true potential their smartphone is capable of. Especially when it comes to electronics projects, it seems that we often overlook how we can integrate and take advantage of their functionality here. Maybe that’s not a big surprise though — while it isn’t rocket science, getting into mobile development certainly has its hurdles and requires a bit of commitment. [Victor Diaz] figured there had to be a better way, so he went on and created PHONK, the self-contained creative scripting toolbox for Android.

PHONK is installed like any other app, and allows rapid prototyping on your Android device via JavaScript by abstracting away and simplifying the heavily boilerplated, native Java parts. So instead of setting up an app from scratch with all the resources defining, UI design, activity and application lifecycle management — not to mention the Android development environment itself — PHONK takes care of all that behind the curtain and significantly reduces the amount of code required to achieve the task you’re actually interested in. In case you’re worrying now that you have to actually program on your phone, well, you can, which can definitely come in handy, but you don’t have to.

Once the app is opened, a web server is started, and connecting to it from any modern browser within the same WiFi network presents you the PHONK development environment with everything you need: editor, file browser, console, and API documentation. You can write your code in the browser, and pressing the run button will execute it straight on the device then. As everything is self-contained within the app itself, no additional software is required, and you can start right away by exploring the set of provided examples that showcase everything supported so far: sensor interaction, BLE server and client, communication protocols like MQTT or WebSockets, OpenStreetMap maps, and even integration with Pure Data and Processing. Attach a USB OTG cable and you can program your Arduino, have serial communication, or interface a IOIO board. You can even connect a MIDI controller.

This is really impressive work done by [Victor], and a lot of attention to detail went into the development. If you have an old Android phone collecting dust somewhere, this would be a great opportunity to revive it and build something with it. And as [Victor] writes on the project’s GitHub page, he’s always curious what people will come up with. If you’re thinking about building a mobile sensor lab, or want to learn more about the sensors inside your phone, have a look at the 36C3 talk about phyphox.

What Does The Bat Say? Tune In With This Heterodyne Detector

Bats are fascinating animals, and despite all the myth and creepiness surrounding them, they really remind one more of a drunk bird lost in the night sky than the blood-sucking creature they’re often made out to be. Of course, some really fall into that category, and unlike actual birds, bats don’t tend to grace us with their singsong — at least not in ways audible for us humans. But thanks to bat detectors, we can still pick up on it, and [Marcel] recently built a heterodyne bat detector himself.

Bat Detector in its enclosure
The bat detector (and an insight to the beauty of German language, where a bat is a flutter mouse)

The detector is made with a 555, an MCP6004 op amp, and a 4066 analog switch — along with a bunch of passives — and is neatly packed into a 3D-printed case with a potentiometer to set the volume and center frequency for the detection. The bat signal itself is picked up by a MEMS microphone with a frequency range [Marcel] found suitable for the task. His write-up also goes in all the mathematics details regarding heterodyning, and how each component plays into that. The resulting audio can be listened to through a headphone output, and after putting together an adapter, can also be recorded from his smartphone. A sample of how that sounds is added in his write-up, which you can also check out after the break.

In case you want to give it a try yourself, [Marcel] put all the design files and some LTSpice simulations on the project’s GitHub page. If you are curious about bat detectors in general and want to read more about them, follow [Pat Whetman] down that rabbit hole, or have a look at this one made in Python for something more software-focused.

Continue reading “What Does The Bat Say? Tune In With This Heterodyne Detector”

Get The Party Started With A Mesh WiFi Light Show

Wildly blinking LEDs may not be the ideal lighting for the average office environment, but they’ll surely spice up any party. And since a party without music is just a meeting, having both synced up is a great way to set the mood. Sure, you could simply roll out your standard LED strip instead, but that gets a bit boring, and also a bit tricky if you want to light up several places the same way. [Gerrit] might have built the perfect solution though, with his (mu)sic (R)eactive (Li)ghts, or muRLi, which are a set of individual lights that synchronize a programmable pattern over WiFi.

The system consists of muRLi itself as the base station that defines and sends the light pattern through WebSockets, and several muRLi Nodes that house a set of WS2812B LEDs to receive and display it. Both are built around a Wemos D1 Mini configured to set up a WiFi mesh network, and depending what’s in reach, the nodes connect either to the base station or other nodes, giving the system definitely enough reach for any location size. The music is picked up by a MAX4466-amplified microphone inside the base station — adding some more flexibility to positioning the system — and analyzed for volume and audio spectrum, which is also shown on an OLED.

The best part however is how the light patterns are programmed. Instead of hard-coding it into the firmware, [Gerrit] went for a modular approach with little ROM cartridges to plug into the muRLi base station. The cartridge itself contains just an I2C EEPROM, storing JavaScript code that is interpreted by the firmware using mJS. The scripts have access to the analyzed audio data and amount of LEDs within the network, and can dynamically generate the patterns as needed that way. Everything is neatly housed in 3D-printed enclosures, with all the design and source files available on the project’s GitHub page — but see for yourself in the video after the break.

If you don’t care about the wireless part but enjoy light synced up with music, have a look at a plain MIDI solution for that. As for [Gerrit], we’re definitely looking forward to seeing his next endeavor one day, since we also enjoyed his last one.

Continue reading “Get The Party Started With A Mesh WiFi Light Show”

Rotary Phone Takes You Around The World And Through Time – With Music

Purposely choosing obsoleted technology combines all the joy of simpler times with the comfort of knowing you’re not actually stuck with outdated (and oftentimes inferior) technology. The rotary phone is a great example here, and while rarely anyone would want to go back to the lenghty, error-prone way of dialing a number on it on an everyday basis, it can definitely add a certain charm to a project. [Caroline Buttet] thought so as well, and turned her grandma’s old rotary phone into a time-traveling, globe-trotting web radio.

The main idea is fairly simple: a Raspberry Pi connects via browser to a web radio site that plays music throughout the decades from places all over the world. [Caroline]’s implementation has a few nice twists added though. First of all, the phone of course, which doesn’t only house the Raspberry Pi, but serves both as actual listening device via handset speaker, and as input device to select the decade with the rotary dial. For a headless setup, she wrote a Chromium extension that maps key events to virtual clicks on the corresponding DOM element of the web site — like the ones that change the decade — and a Python script that turns the rotary dial pulses into those key events.

However, the phone is only half the story here, and the country selection is just as fascinating — which involves an actual world map. An audio connector is attached to each selectable country and connected to an Arduino. If the matching jack is plugged into it, the Arduino informs the Raspberry Pi via serial line about the new selection, and the same Chromium extension then triggers the country change in the underlying web site. You can check all the code in the project’s GitHub repository, and watch a demo and brief explanation in the videos after the break.

Sure, listening radio through a telephone may not be the most convenient way — unless it’s the appropriate genre — but that clearly wasn’t the goal here anyway. It’s definitely an interesting concept, and we could easily see it transferred to some travel- or spy-themed escape room setting. And speaking of spying, if [Caroline]’s name sounds familiar to you, you may remember her virtual peephole from a few months back.

Continue reading “Rotary Phone Takes You Around The World And Through Time – With Music”

Message In A Bottle: Bicycle Trailer On A Mission

Graffiti is a controversial subject, and whether you see it as art or vandalism usually depends where and how you come across it. From the scribbled tag on a house wall, to highly sophisticated murals, they tend to have one thing in common though: making a statement — whether that’s political, showing appreciation, or a simple “I was here”. [Sagarrabanana] had his own statement to make, but chose a less permanent way to express himself with his type of graffiti.

Unhappy about the lack of dedicated cycle lanes in his area, he built an automatic, Arduino-controlled water dispensing bicycle trailer, writing his message on every street he rides on. The build is documented in a video, and shown in action in another one — which are both in Spanish (and also embedded after the break), but pictures are worth their thousand words in any language.

Inspired by persistence of vision (POV), where moving LEDs sync up their blinking to give the illusion of a static image, [Sagarrabanana] transformed the concept to water on a road using an array of solenoids attached to a water tank. Each solenoid is controlled by a relay, and a predefined font determines when to switch each relay — the same way pixels on a display would be set on or off, except small amounts of water are squirted out as the bicycle is moving along. The message itself is received via serial Bluetooth module, and can be easily modified for example from a phone. To adjust the water dispensing to the cycling speed, the whole system is synced to a magnetic switch mounted to one of the trailer’s wheels, so you could theoretically take it also with you on a run.

Time will tell if [Sagarrabanana]’s mission has the success he hopes for, but there’s no doubt the trailer will attract attention anywhere he goes. Well, we wish him all the best to get the message through without requiring a too drastic alternative as writing medium. Although, we’ve seen a graffiti robot that uses chalk spray in the past, so there’s certainly room for a not-too-permanent upgrade if needed.

Continue reading “Message In A Bottle: Bicycle Trailer On A Mission”