ArdEEG Lowers The Cost Of Brain-Computer Interfaces

Considering the incredible potential offered by brain-computer interfaces (BCIs), it’s no wonder there are so many companies scrambling to make their mark in the field. Some see it as an assistive technology, while others imagine it as the future of interactive entertainment. Regardless of the application, the technology has yet to make much inroads with the DIY crowd — largely due to the complexity and cost of the hardware involved.

But that might change in the near future thanks to projects like ardEEG from [Ildar Rakhmatulin]. This open source shield mounts to the top of the Arduino UNO R4 WiFi and features eight channels for collecting electroencephalogram (EEG) data, such as from a dry electrode cap. The signals can then be processed on the computer using the provided Python example code. From there, the raw data can be visualized or plugged into whatever application you have in mind.

Why target the relatively uncommon WiFi version of the Uno? It’s probably obvious for those with experience with this kind of hardware, but for safety, the system needs complete electrical isolation. The Arduino and shield are powered by a common USB battery bank, and all communication is done over WiFi. Even still, the documentation is clear that the ardEEG is not a medical device, and hasn’t been certified by any regulatory agency — its use is entirely at your own risk.

[Ildar] tells us the hardware will be available soon and should cost under $250, making it one of the most affordable BCI development platforms out there. As with his earlier PiEEG project, the hope is that basing the system around a common device in the hacker and maker scene will help democratize access to BCI research.

Continue reading “ArdEEG Lowers The Cost Of Brain-Computer Interfaces”

Bluepad32 Brings All The Controllers To Your MCU

As much as we enjoy spinning up our own solutions, there are times when you’ve got to look at what’s on the market and realize you might be out of your league. For example, take Bluetooth game controllers. Sure, you could make your own with a microcontroller, some buttons, and a couple joysticks. But between the major players like Microsoft, Nintendo, and Sony, as well as independent peripheral companies like 8BitDo, there’s some seriously impressive hardware out there that can be easily repurposed.

How, you ask? Well, Bluepad32 by [Ricardo Quesada] would be a great place to start. This Apache v2.0 licensed project allows you to easily interface with a wide array of commercially available BT controllers, and supports an impressive number of software and hardware platforms. Using the Arduino IDE on the ESP32? No problem. CircuitPython on Adafruit’s PyPortal? Supported. There’s even example code provided for using it on Linux and Mac OS. Sorry Windows fans — perhaps there’s a sassy paperclip or sentient dog built into your OS that can instruct you further.

A few of the controllers supported by Bluepad32.

The nature of the Bluetooth Human Interface Device (HID) protocol means that, at least in theory, pretty much all modern devices should be supported by Bluepad32 automatically. But even still, it’s hard not to be impressed by the official controller compatibility list. There’s also separate lists for Bluetooth mice and keyboards that are known to work with the project.

While it’s somewhat unlikely to be a problem in this particular community, there is an unusual quirk to this project which we think should at least be mentioned. Although Bluepad32 itself is free and open source software (FOSS), it depends on the BTstack library, which in turn uses a more ambiguous licensing scheme. BTstack is “open” in the sense that you can see the source code and implement it in your own projects, but its custom license precludes commercial use. If you want to use BTstack (and by extension, Bluepad32) in a commercial product, you need to contact the developers and discuss terms.

License gotchas aside, Bluepad32 is definitely a project to keep in the back of your mind for the future. You can always build your own controller if you’re looking a challenge, but you’ll have a hell of a time beating the decades of testing and development Sony has put into theirs.

2024 Home Sweet Home Automation: The Winners Are In

Home automation is huge right now in consumer electronics, but despite the wide availability of products on the market, hackers and makers are still spinning up their own solutions. It could be because their situations are unique enough that commercial offerings wouldn’t cut it, or perhaps they know how cheaply many automation tasks can be implemented with today’s microcontrollers. Still others go the DIY route because they’re worried about the privacy implications of pushing such a system into the cloud.

Seeing how many of you were out there brewing bespoke automation setups gave us the idea for this year’s Home Sweet Home Automation contest, which just wrapped up last week. We received more than 80 entries for this one, and the competition was fierce. Judging these contests is always exceptionally difficult, as nearly every entry is a standout accomplishment in its own way.

But the judges forged ahead valiantly, and we now have the top three projects which will be receiving $150 in store credit from the folks at DigiKey.

Continue reading “2024 Home Sweet Home Automation: The Winners Are In”

Microsoft Updates MS-DOS GitHub Repo To 4.0

We’re not 100% sure which phase of Microsoft’s “Embrace, Extend, and Extinguish” gameplan this represents, but just yesterday the Redmond software giant decided to grace us with the source code for MS-DOS v4.0.

To be clear, the GitHub repository itself has been around for several years, and previously contained the source and binaries for MS-DOS v1.25 and v2.0 under the MIT license. This latest update adds the source code for v4.0 (no binaries this time), which originally hit the market back in 1988. We can’t help but notice that DOS v3.0 didn’t get invited to the party — perhaps it was decided that it wasn’t historically significant enough to include.

That said, readers with sufficiently gray beards may recall that DOS 4.0 wasn’t particularly well received back in the day. It was the sort of thing where you either stuck with something in the 3.x line if you had older hardware, or waited it out and jumped to the greatly improved v5 when it was released. Modern equivalents would probably be the response to Windows Vista, Windows 8, and maybe even Windows 11. Hey, at least Microsoft keeps some things consistent.

It’s interesting that they would preserve what’s arguably the least popular version of MS-DOS in this way, but then again there’s something to be said for having a historical record on what not to do for future generations. If you’re waiting to take a look at what was under the hood in the final MS-DOS 6.22 release, sit tight. At this rate we should be seeing it sometime in the 2030s.

Combadge Project Wants To Bring Trek Tech To Life

While there’s still something undeniably cool about the flip-open communicators used in the original Star Trek, the fact is, they don’t really look all that futuristic compared to modern mobile phones. But the upgraded “combadges” used in Star Trek: The Next Generation and its various large and small screen spin-offs — now that’s a tech we’re still trying to catch up to.

As it turns out, it might not be as far away as we thought. A company called Vocera actually put out a few models of WiFi “Communication Badges” in the early 2000s that were intended for hospital use, which these days can be had on eBay for as little as $25 USD. Unfortunately, they’re basically worthless without a proprietary back-end system. Or at least, that was the case before the Combadge project got involved.

Designed for folks who really want to start each conversation with a brisk tap on the chest, the primary project of Combadge is the Spin Doctor server, which is a drop-in replacement for the original software that controlled the Vocera badges. Or at least, that’s the goal. Right now not everything is working, but it’s at the point where you can connect multiple badges to a server, assign them users, and make calls between them.

It also features some early speech recognition capabilities, with transcriptions being generated for the voices picked up on each badge. Long-term, one of the goals is to be able to plug the output of this server into your home automation system. So you could tap your chest and ask the computer to turn on the front porch light, or as the documentation hopefully prophesies, start the coffee maker.

There hasn’t been much activity on the project in the last year or so, but perhaps that’s just because the right group of rabid nerds dedicated developers has yet to come onboard. Maybe the Hackaday community could lend a hand? After all, we know how much you like talking to your electronics. The hardware is cheap and the source is open, what more could you ask for?

Supercon 2023: Alex Lynd Explores MCUs In Infosec

The average Hackaday reader hardly needs to be reminded of the incredible potential of the modern microcontroller. While the Arduino was certainly transformative when it hit the scene, those early 8-bit MCUs were nothing compared to what’s on the market now. Multiple cores with clock speeds measured in the hundreds of megahertz, several MB of flash storage, and of course integrated WiFi capability mean today’s chips are much closer to being fully-fledged computers than their predecessors.

It’s not hard to see the impact this has had on the electronics hobby. In the early 2000s, getting your hardware project connected to the Internet was a major accomplishment that probably involved bringing some hacked home router along for the ride. But today, most would consider something like an Internet-connected remote environmental monitor to be a good starter project. Just plug in a couple I2C sensors, write a few lines of Python, and you’ve got live data pouring into a web interface that you can view on your mobile device — all for just a few bucks worth of hardware.

But just because we’re keenly aware of the benefits and capabilities of microcontrollers like the ESP32 or the Pi Pico, doesn’t mean they’ve made the same impact in other tech circles. In his talk Wireless Hacking on a $5 Budget, Alex Lynd goes over some examples of how he’s personally put these devices to work as part of his information security (infosec) research.

Continue reading “Supercon 2023: Alex Lynd Explores MCUs In Infosec”

80s Function Generator Is Both Beauty And Beast

You know how the saying goes — they don’t make them like this anymore. It’s arguably true of pretty much any electronic device given the way technology changes over time, though whether or not it’s objectively a bad thing is going to vary from case to case.

As a practical example, take a look at the insides of this 80’s vintage HP 3314A function generator shared on the EEV Blog Forum by [D Straney].

Hinged PCBs allow for easy access

With multiple PCBs stacked on top of each other, it’s hard to imagine that more components could possibly be crammed into it. One board in particular appears to be an entire Motorola 6800 computer, something which today would likely be replaced with a single microcontroller.

Which is actually why [D Straney] shared this with us in the first place. After seeing our recent post about a modern waveform generator that’s basically an empty box thanks to its modern components, they thought this would be a nice example of the opposite extreme.

So, is it a good or a bad thing that test equipment isn’t made this way anymore? Well, it’s hard to argue with the improved capabilities, smaller footprint, and reduced cost of most modern gear. But damn is the inside of this HP 3314A gorgeous. As one of the commenters on the page put it, hardware from this era was really a work of art.