Close up of a Sony FX-300 'Jackal' radio

Packing Even More Features Into A Classic Radio

When it comes to hacking niches, breathing new life into vintage devices is always an exciting challenge. [t0mg]’s recent project exemplifies this with his 1978 Sony FX-300 ‘Jackal’ radio. He’d already upgraded the radio in 2021 and turned it into a feature-packed marvel, but there’s always room for improvement.

[t0mg]’s initial 2021 build had its quirks: noisy sound, a subpar display, and a non-functional radio module. Determined to enhance these aspects, he sourced an IPS version of the original 3.2″ ILI9431 LCD, significantly improving viewing angles. To tackle the audio issues, he integrated an M5Stack Atom microcontroller, utilizing its Bluetooth A2DP capabilities to deliver cleaner digital sound via I2S to the Teensy audio board. The Teensy itself got a complete wire overhaul just for the sake of good craftmanship.

The new setup also enabled the display of song metadata. Additionally, [t0mg] incorporated a dedicated Arduino Nano clone to manage inputs, streamlining the overall design. The revamped ‘Jackal’ now boasts a bunch of impressive features such as displaying RDS data for FM stations, voice recording, and an NFC reader for personalized playlists.

If you’re into radio makeovers, look into this post for a real golden oldie, or start out with the basics. For [t0mg]’s earlier improved version of this Jackal, read our article on it here.

Continue reading “Packing Even More Features Into A Classic Radio”

Neat Ring Clock Relies On Addressable LEDs

[WhiskeyTangoHotel] wanted to build an LED clock after seeing some great designs online. They elected to go after a ring clock design, based around the ever-popular WS2812B addressable LEDs.

The core of the build is the HELTEC WiFi 32 development board. It’s not one we’re intimately familiar with, but it’s based around the popular Expressif ESP32. Since it’s got WiFi, it’s able to simply dial up a network time server to always keep accurate time. It then drives a set of WS2812B LEDs set up in six rings. They display the current time with a layout akin to that of a typical analog clock.

What makes this build just a little more fun is the inclusion of Disco Mode. At the press of a button, the full set of LEDs flashes out some fun dancing patterns. The clock is also programmed to trigger the same display for sixty seconds at the top of each hour.

It’s a straightforward build—what might have been highly complicated to build two decades ago has been simplified with the magic of addressable LEDs. What’s also cool is that this clock was apparently inspired by another project shared on these very pages. If you’ve been spurred to build something cool yourself, don’t hesitate to notify the tipsline!

Building A Raycaster Within Bash

Wolfenstein 3D was a paradigm-shifting piece of software, using raycasting techniques to create a game with pseudo-3D graphics. Now, [izabera] has done something very similar, creating a raycasting display engine that runs entirely within bash.

The work was developed with an eye cast over an existing raycasting tutorial online. As you might imagine, implementing these graphical techniques in a text console proved difficult. The biggest problem [izabera] encountered was that bash is slow. It’s not supposed to display full frames of moving content at 25+ fps. It’s supposed to display text. Making it display graphics by using tons of colorful characters is really pushing the limits. Bash also doesn’t have any ability to work with floating points, so all the calculations are done with massive integers. Other problems involved the limited ways to read the keyboard in bash, and keeping track of the display as a whole.

It’s neat reading about how this was pulled off—specifically because it was hard. It might not be the kind of project you’d ever implement for serious work, but there are learnings to be had here that you won’t get anywhere else. Code is on Github, while there’s a visual storytelling of how it came together on imgur.

We’ve seen similar work before—with magical 3D graphics generated in Microsoft Excel. Will wonders never cease? We hope not, because we always like to see new ones on the tipsline. Keep us busy!

Repairing A Samsung 24″ LCD Monitor With Funky Color Issues

The old cable in place on the Samsung monitor. (Credit: MisterHW)
The old cable in place on the Samsung monitor. (Credit: MisterHW)

Dumpster diving is one of those experiences that can net you some pretty cool gear for a reasonable price. Case in point the 24″ Samsung S24E650XW LCD monitor that [MisterHW] saved from being trashed. Apparently in very good condition with no visible external damage, the unit even powered up without issues. It seemed like a golden find until he got onto the Windows desktop and began to notice quaint red shimmering in darker areas and other issues that made it clear why the monitor had been tossed. Of course, the second best part about dumpster diving is seeing whether you can repair such issues.

Prior to disassembly it had been noted that percussive maintenance and bending of the frame changed the symptoms, suggesting that something was a bit loose inside. After taking the back cover and shielded enclosure off, a quick visual inspection of the boards and cables quickly revealed the likely suspect: broken traces on one of the cables.

Apparently somewhere during the assembly step in the factory the cable had been pushed against the PCB’s edge, causing the initial damage. Based on the listed assembly date the monitor had only been in use for a few years before it was tossed, so likely the symptoms would have begun and worsened as one after another of the traces gradually cracked and broke due to vibrations, thermal expansion, etc.

This issue made fixing the monitor very simple, however, assuming a suitable replacement cable could be found. The broken cable is a 30P 1.0 pitch PFC, with EBay throwing up a cable with similar specs for a Thomson brand TV. One purchase and anxious wait later, the replacement cable was installed as in the featured image alongside the old cable. Perhaps unsurprisingly it restored the monitor to full working order, demonstrating once again that dumpster diving is totally worth it.

Building A 3D-Printed Strandbeest

The Strandbeest is a walking machine, a creation of the celebrated artist Theo Jansen. They can look intimidating in their complexity, but it’s quite possible to build your own. In fact, if you’ve got a 3D-printer, it can be remarkably straightforward, as [Maker 101] demonstrates.

The build relies on an Arduino Uno as the brains. It’s equipped with an L293D motor driver shield to run two DC gear motors which drive the walking assemblies. Power is courtesy of a 3-cell lithium-polymer battery. The chassis, legs, and joints are all 3D-printed, and rather attractively in complimentary colors, we might add.

Controlling this little Strandbeest is simple. [Maker 101] gave the Arduino an infrared sensor which can pick up signals from a simple IR remote control. It can be driven backwards and forwards or turned left and right. What’s more, it looks particularly elegant as it walks—a hallmark of a good Strandbeest design.

Design files are available online for the curious. We love a good Strandbeest build, and some can even be useful, too! Video after the break.
Continue reading “Building A 3D-Printed Strandbeest”

Taser Ring Is Scary Jewelry You Shouldn’t Build

Officially, the term “taser” refers to a particular brand of projectile-firing electric stun gun. However, the word is also colloquially used to refer to just about any device intended for delivering electric shocks to an adversary. The taser ring from [Penguin DIY] definitely fits that description, though we’d strictly advise you not to consider building this at home.

The build is a hacky one. An arc generator circuit was pulled out from a jet cigarette lighter, and reconfigured to fit in a small ring-based form factor. It was hooked up with a power switch and a small bank of 30 mAh lithium polymer cell for power, and a compact USB-C charger board was installed to keep the batteries juiced. The electronics were then delicately assembled into a ring-shaped mold, which was injected with resin to produce the final ring. Once cast, a pair of small metal electrodes were installed on the outside. Activating the taser function is as simple as squeezing the ring—easy to do just by making a fist.

We’ve seen projects like these before; our advice is usually to avoid them unless you really know what you’re doing. Whether you end up shocking someone else or accidentally shocking yourself, the results tend to be bad. The latter seems particularly easy to do if you’re wearing this thing on your finger. Given it’s a ring, don’t expect to be able to pull it off in a hurry, either. It’s hard to see how that ends well.

Continue reading “Taser Ring Is Scary Jewelry You Shouldn’t Build”

Gimbal Clock Relies On Servos For Its Cool Movements

In the annals of human history, clocks got boring there for a while. Most were just variations on hands spinning in a circle, with the occasional tweeting bird mechanism to liven things up. These days, we’re treated to all kinds of original and oddball designs, like this neat gimbal clock from [Twisted&Tinned].

The concept of the build is straightforward enough. It has four main vertical arms, each with a servo at the base that rotates about a vertical axis. Upon each arm are between one and three servos which rotate 3D printed structures in the shape of numbers. A Wemos D1 Mini microcontroller commands the servos to the correct positions to display the current time. It also uses its WiFi connection to get accurate time updates directly from a network time server.

It’s quite an artistic build—and it’s rather enjoyable to watch this one flex and twist its way into displaying the right time. It’s also easier to read at a glance than some of the more unintelligible designs out there. Indeed, we see all kinds of neat and innovative clocks around these parts.

Continue reading “Gimbal Clock Relies On Servos For Its Cool Movements”