Replacing Crude Oil Fractional Distillation With Microporous Polyimine Membranes

Currently the typical way that crude oil is processed involves a fractional distillation column, in which heated crude oil is separated into the various hydrocarbon compounds using distinct boiling points. This requires the addition of significant thermal energy and is thus fairly energy intensive. A possible alternative has been proposed by [Tae Hoon Lee] et al. with a research article in Science. They adapted membranes used with reverse-osmosis filtration to instead filter crude oil into its constituents, which could enable skipping the heating step and thus save a lot of energy.

The main change that had to be made was to replace the typical polyamide films with polyimine ones, as the former have the tendency to swell up – and thus becomes less effective – when exposed to organic solvents, which includes hydrocarbons. During testing, including with a mixture of naphtha, kerosene and diesel, the polyimine membrane was able to separate these by their molecular size.

It should be noted of course that this is still just small scale lab-testing and the real proof will be in whether it can scale up to the flow rates and endurance required from a replacement for a distillation column. Since this research is funded in part by the fossil fuel industry, one can at least expect that some trial installations will be set up before long, with hopefully positive results.

EU Ecodesign For Smartphones Including Right To Repair Now In Effect

Starting June 20th, any cordless phone, smartphone, or feature phone, as well as tablets (7 – 17.4″ screens) have to meet Ecodesign requirements. In addition there is now mandatory registration with the European Product Registry for Energy Labelling (EPREL). The only exception are phones and tablets with a flexible (rollable) main display, and tablets that do not use a mobile OS, i.e. not Android, iPadOS, etc. These requirements include resistance to drops, scratches and water, as well as batteries that last at least 800 cycles.

What is perhaps most exciting are the requirements that operating system updates must be made available for at least five years from when the product is last on the market, along with spare parts being made available within 5-10 working days for seven years after the product stops being sold. The only big niggle here is that this access only applies to ‘professional repairers’, but at least this should provide independent repair shops with full access to parts and any software tools required.

On the ENERGY label that is generated with the registration, customers can see the rating for each category, including energy efficiency, battery endurance, repairability and IP (water/dust ingress) rating, making comparing devices much easier than before. All of this comes before smartphones and many other devices sold in the EU will have to feature easily removable batteries by 2027, something which may make manufacturers unhappy, but should be a boon to us consumers and tinkerers.

Photo of Inky Frame e-paper display

Converting An E-Paper Photo Frame Into Weather Map

Here’s a great hack sent in to us from [Simon]. He uses an e-paper photo frame as a weather map!

By now you are probably aware of e-paper technology, which is very low power tech for displaying images. E-paper only uses energy when it changes its display, it doesn’t draw power to maintain a picture it has already rendered. The particular e-paper used in this example is fairly large (as e-paper goes) and supports color (not just black and white) which is why it’s expensive. For about US$100 you can get a 5.7″ 7-color EPD display with 600 x 448 pixels.

Continue reading “Converting An E-Paper Photo Frame Into Weather Map”

Retrotechtacular: 1970s Radio

Before YouTube, you had to watch your educational videos on film. In the 1970s, if you studied radio, you might have seen the video from Universal Education and Visual Arts, titled Understanding Electronics Basic Radio Circuitry. The video’s been restored, and it appears on the [CHAP] YouTube channel.

The video starts with a good history lesson that even covers Fessenden, which you rarely hear about. The video is full of old components that you may or may not remember, depending on your age. There’s a classic crystal radio at the start and it quickly moves to active receivers. There’s probably nothing in here you don’t already know. On the other hand, radios work about the same today as they did in the 1970s, unless you count software-defined varieties.

We expect this was produced for the “trade school” market or, maybe, a super advanced high school shop class. There were more in the series, apparently, including ones on vacuum tubes, the transistor, and the principles of television.

We were sad that the credits don’t mention the narrator. He sounded familiar. Maybe Robert Vaughn? Maybe not. A little research indicates the company was a division of Universal Studios, although the Library of Congress says it was actually produced by  Moreland-Latchford Productions in Toronto.

Maybe these videos were the next step in becoming a child radio engineer. If you like old radio videos, this one is even older.

Continue reading “Retrotechtacular: 1970s Radio”

Measurement Is Science

I was watching Ben Krasnow making iron nitride permanent magnets and was struck by the fact that about half of the video was about making a magnetometer – a device for measuring and characterizing the magnet that he’d just made. This is really the difference between doing science and just messing around: if you want to test or improve on a procedure, you have to be able to measure how well it works.

When he puts his home-made magnet into the device, Ben finds out that he’s made a basically mediocre magnet, compared with samples out of his amply stocked magnet drawer. But that’s a great first data point, and more importantly, the magnetometer build gives him a way of gauging future improvements.

Of course there’s a time and a place for “good enough is good enough”, and you can easily spend more time building the measurement apparatus for a particular project than simply running the experiment, but that’s not science. Have you ever gone down the measurement rabbit hole, spending more time validating or characterizing the effect than you do on producing it in the first place?

Tiny Tellurium Orbits Atop A Pencil

We like scale models here, but how small can you shrink the very large? If you’re [Frans], it’s pretty small indeed: his Micro Tellurium fits the orbit of the Earth on top of an ordinary pencil. While you’ll often see models of Earth, Moon and Sun’s orbital relationship called “Orrery”, that’s word should technically be reserved for models of the solar system, inclusive of at least the classical planets, like [Frans]’s Gentleman’s Orrery that recently graced these pages. When it’s just the Earth, Moon and Sun, it’s a Tellurium.

The whole thing is made out of brass, save for the ball-bearings for the Earth and Moon. Construction was done by a combination of manual milling and CNC machining, as you can see in the video below. It is a very elegant device, and almost functional: the Earth-Moon system rotates, simulating the orbit of the moon when you turn the ring to make the Earth orbit the sun. This is accomplished by carefully-constructed rods and a rubber O-ring.

Unfortunately, it seems [Franz] had to switch to a thicker axle than originally planned, so the tiny moon does not orbit Earth at the correct speed compared to the solar orbit: it’s about half what it ought to be. That’s unfortunate, but perhaps that’s the cost one pays when chasing smallness. It might be possible to fix in a future iteration, but right now [Franz] is happy with how the project turned out, and we can’t blame him; it’s a beautiful piece of machining.

It should be noted that there is likely no tellurium in this tellurium — the metal and the model share the same root, but are otherwise unrelated. We have featured hacks with that element, though.

Thanks to [Franz] for submitting this hack. Don’t forget: the tips line is always open, and we’re more than happy to hear you toot your own horn, or sing the praises of someone else’s work. Continue reading “Tiny Tellurium Orbits Atop A Pencil”

If Your Kernel Development Is A Little Rusty

To paraphrase an old joke: How do you know if someone is a Rust developer? Don’t worry, they’ll tell you. There is a move to put Rust everywhere, even in the Linux kernel. Not going fast enough for you? Then check out Asterinas — an effort to create a Linux-compatible kernel totally in Rust.

The goal is to improve memory safety and, to that end, the project describes what they call a “framekernel.” Historically kernels have been either monolithic, all in one piece, or employ a microkernel architecture where only bits and pieces load.

A framekernel is similar to a microkernel, but some services are not allowed to use “unsafe” Rust. This minimizes the amount of code that — in theory — could crash memory safety. If you want to know more, there is impressive documentation. You can find the code on GitHub.

Will it work? It is certainly possible. Is it worth it? Time will tell. Our experience is that no matter how many safeguards you put on code, there’s no cure-all that prevents bad programming. Of course, to take the contrary argument, seat belts don’t stop all traffic fatalities, but you could just choose not to have accidents. So we do have seat belts. If Rust can prevent some mistakes or malicious intent, maybe it’s worth it even if it isn’t perfect.

Want to understand Rust? Got ten minutes?