What Happened To Running What You Wanted On Your Own Machine?

When the microcomputer first landed in homes some forty years ago, it came with a simple freedom—you could run whatever software you could get your hands on. Floppy disk from a friend? Pop it in. Shareware demo downloaded from a BBS? Go ahead! Dodgy code you wrote yourself at 2 AM? Absolutely. The computer you bought was yours. It would run whatever you told it to run, and ask no questions.

Today, that freedom is dying. What’s worse, is it’s happening so gradually that most people haven’t noticed we’re already halfway into the coffin.

Continue reading “What Happened To Running What You Wanted On Your Own Machine?”

High Performance Motor Control With FOC From The Ground Up

Testing the FOC-based motor controller. (Credit: Excessive Overkill, YouTube)
Testing the FOC-based motor controller. (Credit: Excessive Overkill, YouTube)

Vector Control, also known as Field Oriented Control or FOC is an AC motor control scheme that enables fine-grained control over a connected motor, through the precise control of its phases. In a recent video [Excessive Overkill] goes through the basics and then the finer details of how FOC works, as well as how to implement it. These controllers generally uses a proportional integral (PI) loop, capable of measuring and integrating the position of the connected motor, thus allowing for precise adjustments of the applied vector.

If this controller looks familiar, it is because we featured it previously in the context of reviving old industrial robotic arms. Whether you are driving the big motors on an industrial robot, or a much smaller permanent magnet AC (PMAC) motor, FOV is very likely the control mechanism that you want to use for the best results. Of note is that most BLDC motors are actually also PMACs with ESC to provide a DC interface.

Continue reading “High Performance Motor Control With FOC From The Ground Up”

A Tale Of Two Car Design Philosophies

As a classic car enthusiast, my passion revolves around cars with a Made in West Germany stamp somewhere on them, partially because that phrase generally implied a reputation for mechanical honesty and engineering sanity. Air-cooled Volkswagens are my favorites, and in fact I wrote about these, and my own ’72 Super Beetle, almost a decade ago. The platform is incredibly versatile and hackable, not to mention inexpensive and repairable thanks to its design as a practical, affordable car originally meant for German families in the post-war era and which eventually spread worldwide. My other soft-spot is a car that might seem almost diametrically opposed to early VWs in its design philosophy: the Mercedes 300D. While it was a luxury vehicle, expensive and overbuilt in comparison to classic Volkswagens, the engineers’ design choices ultimately earned it a reputation as one of the most reliable cars ever made.

As much as I appreciate these classics, though, there’s almost nothing that could compel me to purchase a modern vehicle from either of these brands. The core reason is that both have essentially abandoned the design philosophies that made them famous in the first place. And while it’s no longer possible to buy anything stamped Made in West Germany for obvious reasons, even a modern car with a VIN starting with a W doesn’t carry that same weight anymore. It more likely marks a vehicle destined for a lease term rather than one meant to be repaired and driven for decades, like my Beetle or my 300D.

Continue reading “A Tale Of Two Car Design Philosophies”

Standalone CNC Tube Cutter/Notcher Does It With Plasma

Tubes! Not only is the internet a series of them, many projects in the physical world are, too. If you’re building anything from a bicycle to a race cart to and aeroplane, you might find yourself notching and welding metal tubes together. That notching part can be a real time-suck. [Jornt] from HOMEMADE MADNESS (it’s so mad you have to shout the channel name, apparently) thought so when he came up with this 3-axis CNC tube notcher.

If you haven’t worked with chrome-molly or other metal tubing, you may be forgiven for wondering what the big deal is, but it’s pretty simple: to get a solid weld, you need the tubes to meet. Round tubes don’t really want to do that, as a general rule. Imagine the simple case of a T-junction: the base of the T will only meet the crosspiece in a couple of discreet points. To get a solid joint, you have to cut the profile of the crosspiece from the end of the base. Easy enough for a single T, but for all the joins in all the angles of a space-frame? Yeah, some technological assistance would not go amiss.

Which is where [Jornt]’s project comes in. A cheap plasma cutter sits on one axis, to cut the tubes as they move under it. The second axis spins the tube, which is firmly gripped by urethane casters with a neat cam arrangement. The third axis slides the tube back and forth, allowing arbitarily long frame members to be cut, despite the very compact build of the actual machine. It also allows multiple frame members to be cut from a single long length of tubing, reducing setup time and speeding up the overall workflow. Continue reading “Standalone CNC Tube Cutter/Notcher Does It With Plasma”

2025 Hackaday Supercon: More Wonderful Speakers

Supercon is just around the corner, and we’re absolutely thrilled to announce the second half of our slate! Supercon will sell out so get your tickets now before it’s too late. If you’re on the fence, we hope this pushes you over the line. And if it doesn’t, stay tuned — we’ve still got to tell you everything about the badge and the fantastic keynote speaker lineup.

(What? More than one keynote speaker? Unheard of!)

And as if that weren’t enough, there’s delicious food, great live music, hot soldering irons, and an absolutely fantastic crowd of the Hackaday faithful, and hopefully a bunch of new folks too. If you’re a Supercon fan, we’re looking forward to seeing you again, and if it’s your first time, we’ll be sure to make you feel welcome. Continue reading “2025 Hackaday Supercon: More Wonderful Speakers”

Segger’s Awkward USB-C Issue With The J-Link Compact Debugger

Theoretically USB-C is a pretty nifty connector, but the reality is that it mostly provides many exciting new ways to make your device not work as expected. With the gory details covered by [Alvaro], the latest to join the party is Segger, with its J-Link BASE Compact MCU debugger displaying the same behavior which we saw back when the Raspberry Pi 4 was released in 2019. Back then so-called e-marked USB-C cables failed to power the SBC, much like how this particular J-Link unit refuses to power up when connected using one of those special USB-C cables.

We covered the issue in great detail back then, discussing how the CC1 and CC1 connections need to be wired up correctly with appropriate resistors in order for the USB-C supply – like a host PC – to provide power to the device. As [Alvaro] discovered through some investigation, this unit made basically the same mistake as the RPi 4B SBC before the corrected design. This involves wiring CC1 and CC2 together and as a result seeing the same <1 kOhm resistance on the active CC line, meaning that to the host device you just hooked up a USB-C audio dongle, which obviously shouldn’t be supplied with power.

Although it’s not easy to tell when this particular J-Link device was produced, the PCB notes its revision as v12.1, so presumably it’s not the first rodeo for this general design, and the product page already shows a different label than for the device that [Alvaro] has. It’s possible that it originally was sloppily converted from a previous micro-USB-powered design where CC lines do not exist and things Just Work™, but it’s still a pretty major oversight from what should be a reputable brand selling a device that costs €400 + VAT, rather than a reputable brand selling a <$100 SBC.

For any in the audience who have one of these USB-C-powered debuggers, does yours work with e-marked cables, and what is the revision and/or purchase date?

2025 Hackaday Speakers, Round One! And Spoilers

Supercon is the Ultimate Hardware Conference and you need to be there! Just check out this roster of talks that will be going down. We’ve got something for everyone out there in the Hackday universe, from poking at pins, to making things beautiful, to robots, radios, and FPGAs. And this isn’t even half of the list yet.

We’ve got a great mix of old favorites and new faces this year, and as good as they are, honestly the talks are only half of the fun. The badge hacking, the food, the brainstorming, and just the socializing with the geekiest of the geeky, make it an event you won’t want to miss. If you don’t have tickets yet, you can still get them here.

Plus, this year, because Friday night is Halloween, we’ll be hosting a Sci-Fi-themed costume party for those who want to show off their best props or most elaborate spacesuits. And if that is the sort of thing that you’re into, you will absolutely want to stay tuned to our Keynote Speaker(s) announcement in a little while. (Spoiler number one.) Continue reading “2025 Hackaday Speakers, Round One! And Spoilers”