Bicycles Are Bad At Towing, Even With Crawler Gears

Gearing can make a huge difference to a cyclist, enabling even the least fit rider to climb a steep hill, albeit slowly. [Berm Peak Express] took that to the next level, creating a super-low geared bicycle capable of actually towing seriously heavy loads.

The build consists of a custom 74-tooth sprocket for the rear wheel, paired with a 24-tooth chain ring for the pedals. The custom sprocket doesn’t have any holes drilled or other lightening measures taken, but given the slow speeds involved, the extra rotating mass probably isn’t much of an issue. With that gearing, 3.08 turns of the pedals will result in just one turn of the rear wheel, with the aim to provide tractor-like torque with the trade-off being incredibly low forward speed.

Installing the giant rear cog required using a 3D-printed guide to keep the chain tensioned, and the rear brakes are entirely absent, but it all came together. Bikes aren’t built for towing, and some issues are faced with dragging a Jeep as the bike struggles with balance and traction. However, with some effort, a grown adult can be towed in a child carriage up a hill, no problems.

The bike proves difficult to ride as the forward speed is so slow that balance is problematic. However, it was interesting to see the experiment run, and the wear marks on the hub from the huge loads put through the rear wheel. If you’re digging the weird bikes, though, check out this hubless design as well. Video after the break.

Continue reading “Bicycles Are Bad At Towing, Even With Crawler Gears”

Enraged Rabbit Project Is A Filament Cocktail Special

As long as 3D printers have been around, it seems as though many of us have dreamed about nozzle-sharing solutions for multicolor 3D prints. Just because Prusa’s MMU has had the spotlight for some time doesn’t mean that there’s no space to design something original. If you’re craving something new to feast your eyes upon, look no further than the EnragedRabbitProject by [EtteGit]. Built for Voron 3D printers, it’s a scalable filament changing solution designed from the ground up that expands to accommodate up to 9 filaments.

EnragedRabbitProject is broken into four main components. First comes the Enraged Rabbit Carrot Feeder (ERCF), the system that handles filament selection, retraction, and loading. Next, comes the Carrot Patch (ERCP), a spool holder/buffer combo that’s needed per spool. For those unfamiliar with filament changers, unspooling filament is easy, but rewinding it back onto the spool is hard. And since the nozzle will retract a significant length of filament when it switches between filaments, it’s important to manage all this extra loose filament to prevent tangles. A filament buffer is the solution; it’s a clever mechanical addition to the spool holder that will manage the extra filament that gets unwound during these filament changes. Beyond these two systems is the King’s Seat (ERKS) a Voron-2 setup that purges extra filament into beads instead of purge blocks, and finally, the filament sensor, which detects filament presence for filament changes.

It’s sometimes hard to appreciate the reliability of these sorts of CNC systems. On that note, keep in mind that the prints on the project’s landing page are the results of hundreds if not thousands of filament swaps — truly an astonishing feat. Beyond reliability is the project’s presentation. [EtteGit] has kindly posted STEP and STL files for all mechanical components, the Klipper configuration files, and a bill-of-materials that will scale according to the number of filaments you’re installing.

We’re thrilled to see folks continue to innovate on the concept of what it means to be a multi-color or multi-material 3D printer. For other takes on multi-filament setups, have a look at [Paul Paukstelis’] microscope-inspired head changer, and [MihaiDesigns’] removable tool head concept.

Continue reading “Enraged Rabbit Project Is A Filament Cocktail Special”

Snails, Sensors, And Smart Dust: The Michigan Micro Mote

If you want to track a snail, you need a tiny instrumentation package. How do you create an entire data acquisition system, including sensors, memory, data processing and a power supply, small enough to fit onto a snail’s shell?

Throughout history, humans have upset many ecosystems around the world by introducing invasive species. Australia’s rabbits are a famous example, but perhaps less well-known are the Giant African land snails (Lissachatina fulica) that were introduced to South Pacific islands in the mid-20th century. Originally intended as a food source (escargot africain, anyone?), they quickly turned out to be horrible pests, devouring local plants and agricultural crops alike.

Not to be deterred, biologists introduced another snail, hoping to kill off the African ones: the Rosy Wolfsnail (Euglandina rosea), native to the Southeastern United States. This predatory snail did not show great interest in the African intruders however, and instead went on to decimate the indigenous snail population, driving dozens of local species into extinction.

A snail with a solar sensor attached to its shell
A Rosy Wolfsnail carrying a light sensing Micro Mote on its back. Source: Cindy S. Bick et al., 2021

One that managed to survive the onslaught is a small white snail called Partula hyalina. Confined to the edges of the tropical forests of Tahiti, biologists hypothesized that it was able to avoid the predators by hiding in sunny places which were too bright for E. rosea. The milky-white shells of P. hyalina supposedly protected them from overheating by reflecting more sunlight than the wolf snails’ orange-brown ones.

This sounds reasonable, but biologists need proof. So a team from the University of Michigan set up an experiment to measure the amount of solar radiation experienced by both snail types. They attached tiny light sensors to the wolf snails’ shells and then released them again. The sensors measured the amount of sunlight seen by the animals and logged this information during a full day. The snails were then caught again and the data retrieved, and the results proved the original hypothesis.

So much for science, but exactly how did they pull this off? Continue reading “Snails, Sensors, And Smart Dust: The Michigan Micro Mote”

Hackaday Remoticon: Tickets And T-Shirts!

Tickets for the Hackaday Remoticon are now available and there’s one big addition this year:  Shirts!

As you have doubtless heard, the Supercon is on hold for one more year, so we’re doing Remoticon round two.  And aside from missing the direct human contact, our conference t-shirt drawer is getting a little empty. While we can’t fix the global pandemic, we can fix the latter problem with this eye-catching design, the latest in a long line of art created by Aleksandar Bradic for Hackaday Conferences.

Remoticon will kick off on Friday, November 19th with some new social shenanigans. All day Saturday we’ll present talks, capped off by the Hackaday Prize Ceremony and a party that evening. Keep your eyes peeled for more info, but grab your ticket today and block off your calendar.

Attendance is free, and your registering early helps us plan our infrastructure to handle the crowd. If you want a t-shirt, you can order one at the same time for $25. Shipping for people in the US is included, but because of the realities of postal costs, shipping will be $10 for those everywhere else in the world.

 

We’re also still looking for more great talks! The Call for Proposals is open until October 14th. Don’t sit on the sidelines, do your Hackaday duty and give a talk about something that interests you. There’s a critical mass of other geeks into the same stuff that will delight in hearing from you! Come join us.

Continue reading “Hackaday Remoticon: Tickets And T-Shirts!”

Using Arduinos To Drive Undocumented Displays

For those of us old enough to remember the VCR (and the difficulty of programming one), the ubiquitous vacuum fluorescent display, or VFD, is burned into our memories, mostly because of their brightness and contrast when compared to the superficially-similar LCD. These displays are incredibly common even apart from VCRs, though, and it’s easy to find them for next to no cost, but figuring out how to drive one if you just pulled it out of a 30-year-old VCR is going to take some effort. In this build, [mircemk] shows us how he drives unknown VFD displays using an Arduino in order to build his own weather forecasting station.

For this demonstration [mircemk] decided to turn a VFD into a weather forecasting station. First of all, though, he had to get the VFD up and running. For this unit, which came from a point-of-sale (POS) terminal, simply connecting power to the device turned on a demo mode for the display which let him know some information about it. From there, and with the knowledge that most POS terminals use RS232 to communicate, he was able to zero in on the Rx and Tx pins on the on-board microcontroller and interface them with an Arduino. From there it’s a short step to being able to output whatever he wanted to this display.

For this project, [mircemk] wanted the display to output information about weather, but rather than simply pull data from some weather API he is actually using a sensor suite connected to the Arduino to measure things like barometric pressure in order to make a 12-hour forecast. The design is inspired by old Zambretti weather forecasters which used analog wheels to input local weather data. It’s an interesting build not only for the VFD implementation but also for attempting to forecast the weather directly with just a tiny sensor set instead of downloading a forecast to display. To do any better with your own forecasts, you’d likely need your own weather station.

Continue reading “Using Arduinos To Drive Undocumented Displays”

Counting Down To The Final Atlas Rocket

The Atlas family of rockets have been a mainstay of America’s space program since the dawn of the Space Age, when unused SM-65 Atlas intercontinental ballistic missiles (ICBMs) were refurbished and assigned more peaceful pursuits. Rather than lobbing thermonuclear warheads towards the Soviets, these former weapons of war carried the first American astronauts into orbit, helped build the satellite constellations that our modern way of life depends on, and expanded our knowledge of the solar system and beyond.

SM-65A Atlas ICBM in 1958

Naturally, the Atlas V that’s flying today looks nothing like the squat stainless steel rocket that carried John Glenn to orbit in 1962. Aerospace technology has evolved by leaps and bounds over the last 60 years, but by carrying over the lessons learned from each generation, the modern Atlas has become one of the most reliable orbital boosters ever flown. Since its introduction in 2002, the Atlas V has maintained an impeccable 100% success rate over 85 missions.

But as they say, all good things must come to an end. After more than 600 launches, United Launch Alliance (ULA) has announced that the final mission to fly on an Atlas has been booked. Between now and the end of the decade, ULA will fly 28 more missions on this legendary booster. By the time the last one leaves the pad the company plans to have fully transitioned to their new Vulcan booster, with the first flights of this next-generation vehicle currently scheduled for 2022.

Continue reading “Counting Down To The Final Atlas Rocket”

Fire-breathing dragon head, side view

Flame-Spitting Dragon Head Heats Up Halloween

Halloween is looming, and [Jonathan Gleich] decided that an ideal centerpiece would be a flame-spitting dragon’s head. It started with an economical wall-mount dragon’s head, combined with a variety of off-the-shelf components to become something greater.

Dragon head with arc ignitor lit
Spark from high-voltage ignitor, right at the torch opening.

The fire comes from a kind of propane torch sold as a weed killer set, which looks a little like a miniature tiger torch. The flow of propane is limited by a regulator (which keeps the flame short and fixed), and controlled with a gas-rated 12 V solenoid valve. Ignition is done with the help of a spark igniter that fires up on demand, fed by a high-voltage ignition coil. The two combine at the Dragon’s mouth, where the flame originates, but the electrical components are otherwise isolated from the gas elements as much as possible.

The dragon head is made of acrylic, and if exposed to enough heat acrylic will first melt, then burn. To help avoid a meltdown, the dragon breathes fire only intermittently.  [Jonathan] also gave the mouth area a heat-resistant barrier made from generous layers of flame-blocking mortar and sealants from the hardware store. The finishing touch comes in the form of bright red LEDs in the eyes, which give the head a bit more life.

Watch the ignitor in action and see the head spewing flames in the two short videos embedded below. The head should make for some good pictures come Halloween, and is a good example of how repurposing off-the-shelf items can sometimes be just what is needed for a project.

Interested in something smaller, but still fiery? Check out this pet fire-breathing dragon project for all your robotic animal companion needs. Continue reading “Flame-Spitting Dragon Head Heats Up Halloween”