Getting Over 4Gbps Out Of A Compute Module 4

For the average home gamer, good old fashioned Ethernet at 100 Mbit/s is only just starting to become a bottleneck as things like 4K video streaming begin to demand more bandwidth. As always, though, there are those who wish to push the limits of what is possible. [Jeff Geerling] is one such operator, who set out to maximise the network throughput on the Raspberry Pi Compute Module 4. 

The build began by taking advantage of the PCI-Express 2.0 single lane interface on the new Raspberry Pi Compute Module. Hooked up to an Intel four-port Gigabit Ethernet card, and in combination with the onboard Gigabit-E port, [Jeff] was able to get 3.0 Gbit/s out of the setup without too much fuss. However, he wanted more, and set about finding where he was being held back. It turned out that ksoftirqd, a daemon that handles network packets, can only run on one core on the Raspberry Pi 4, and it was getting maxed out at this data rate. Overclocking the CPU helped, getting the max rate up to 3.4 Gbit/s.

Further analysis showed that the onboard interface was only contributing 200 Mbit/s, with the Intel card maxing out at 3.2 Gbit/s. In the case of the latter, this was due to the limits of the PCI-E interface. In the case of the former, however, [Jeff] knew that more was available. The trick turned out to be recompiling the Linux kernel to allow the internal interface to be able to set to use a higher Maximum Transmission Unit. This allows each network transmission to carry more data without extra CPU load. With the internal interface and the external card all set to an MTU of 9000, the Pi was able to spit out a scorching 4.15 Gbit/second. Details of the hack are available on Github for the curious.

It’s a hack that doesn’t offer a lot to the average user, though [Jeff] states he has some interesting applications in mind. He’s also contemplating what can be achieved with a 10 Gbit card, which we can’t wait to see. If you want to learn more about the Compute Module’s features, including a couple of tips for laying out yor own board, check out our review. Video after the break.

Continue reading “Getting Over 4Gbps Out Of A Compute Module 4”

Prism Lighting – The Art Of Steering Daylight

The incandescent light bulb was one of the first early applications of electricity, and it’s hard to underestimate its importance. But before the electric light, people didn’t live in darkness — they thought of ways to redirect sunlight to brighten up interior spaces. This was made possible through the understanding of the basic principles of optics and the work of skilled glassmakers who constructed prism tiles, deck prisms, and vault lights. These century-old techniques are still being applied today for the diffusion of LEDs or for increasing the brightness of LCD displays.

Semantics First!

People in optics are a bit sloppy when it comes to the definition of a prism. While many of them are certainly not geometric prisms, Wikipedia defines it as a transparent optical element with flat, polished surfaces of which at least one is angled. As can be seen in the pictures below some of the prisms here do not even stick to this definition. Browsing the catalog of your favorite optics supplier you will find a large variety of prisms used to reflect, invert, rotate, disperse, steer, and collimate light. It is important to point out that we are not so much interested in dispersive prisms that split a beam of white light into its spectrum of colors, although they make great album covers. The important property of prisms in this article is their ability to redirect light through refraction and reflection.

A Safe Way to Bring Light Under Deck

A collection of deck lights used to direct sunlight below deck in ships. Credit: glassian.org

One of the most important uses of prism lighting was on board ships. Open flames could have disastrous consequences aboard a wooden ship, so deck prisms were installed as a means to direct sunlight into the areas below decks. One of the first patents for deck lights “THE GREAT AND DURABLE INCREASE OF LIGHT BY EXTRAORDINARY GLASSES AND LAMPS” was filed by Edward Wyndus as early as 1684. Deck prisms had typical sizes of 10 to 15 centimeters. The flat top was installed flush with the deck and the sunlight was refracted and directed downward from the prism point. Because of the reversibility of light paths (“If I can see you, you can see me”) deck prisms also helped to spot fires under deck. Continue reading “Prism Lighting – The Art Of Steering Daylight”

Learning SDR And DSP Hack Chat

Join us on Wednesday, November 11th at noon Pacific for Learning SDR and DSP Hack Chat with Marc Lichtman!

“Revolution” is a term thrown about with a lot less care than it probably should be, especially in fields like electronics. It’s understandable, though — the changes to society that have resulted from the “Transistor Revolution” or the “PC Revolution” or more recently, the “AI Revolution” have been transformative, often for good and sometimes for ill. The common thread, though, is that once these revolutions came about, nothing was ever the same afterward.

Such is the case with software-defined radio (SDR) and digital signal processing (DSP). These two related fields may not seem as transformative as some of the other electronic revolutions, but when you think about it, they really have transformed the world of radio communications. SDR means that complex radio transmitters and receivers, no longer have to be implemented strictly in hardware as a collection of filters, mixers, detectors, and amplifiers; instead, they can be reduced to a series of algorithms running on a computer.

Teamed with DSP, SDR has resulted in massive shifts in the RF field, with powerful, high-bandwidth radio links being built into devices almost as an afterthought. But the concepts can be difficult to wrap one’s head around, at least when digging beyond the basics and really trying to learn how SDR and DSP work. Thankfully, Dr. Marc Lichtman, an Adjunct Professor at the University of Maryland, literally wrote the book on the subject. “PySDR: A Guide to SDR and DSP using Python” is a fantastic introduction to SDR and DSP that’s geared toward those looking to learn how to put SDR and DSP to work in practical systems. Dr. Lichtman will stop by the Hack Chat to talk about his textbook, to answer your questions on how best to learn about SDR and DSP, and to discuss what the next steps are once you conquer the basics.

join-hack-chatOur Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, November 11 at 12:00 PM Pacific time. If time zones baffle you as much as us, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.

[Banner image credit: Dsimic, CC BY-SA 4.0, via Wikimedia Commons]

Continue reading “Learning SDR And DSP Hack Chat”

The Logic Chip RISC-V Project Reboots

The RISC-V architecture is inexorably inching from its theoretical origins towards the mainstream, as what could once only be done on an exotic FPGA can now be seen in a few microcontrollers as well as some much more powerful processors. It’s exciting because it offers us the prospect of fully open-source hardware on which to run our open-source operating systems, but it’s more than that. RISC-V isn’t a particular processor core so much as a specification that can be implemented at any of a number of levels, and in its simplest form can even be made real using 74 logic chips. This was the aim of [Robert Baruch]’s LMARV-1 that caused a stir a year or two ago but then went on something of a hiatus. We’re pleased to note that he’s posted a video announcing a recommencement of the project, along with a significant redesign.

We’ve placed the video below the break, and it’s much more than a simple project announcement. Instead, it’s an in-depth explanation of the design decisions and the physical architecture of the processor. It amounts to a primer on processor design, and though it’s a long watch we’d say you won’t be disappointed if your interests lie in that direction.

We first covered the LMARV-1 back in early 2018, so we’re glad to see it back in progress and we look forward to seeing its continued progress.

Continue reading “The Logic Chip RISC-V Project Reboots”

Product Review: The TinySA, A Shirt-Pocket Sized Spectrum Analyzer

I suppose most of us have had the experience of going to the mailbox and seeing that telltale package in the white plastic bag, the sign that something has just arrived from China. This happened to me the other day, and like many of you it was one of those times when I puzzled to myself: “I wonder what I bought this time?”

With so many weeks or months between the time of your impulsive click on the “Buy Now” button on AliExpress or eBay and the slow boat from China actually getting the package to your door, it’s easy enough to forget what exactly each package contains. And with the price of goods so low, the tendency to click and forget is all the easier. That’s not necessarily a good thing, but I like surprises as much as the next person, so I was happy to learn that I was now the owner of a tinySA spectrum analyzer. Time for a look at what this little thing can do.

Continue reading “Product Review: The TinySA, A Shirt-Pocket Sized Spectrum Analyzer”

Ethernet Goes To The Ether

Since the ether is an old term for the fictitious space where radio waves propagate, we always thought it was strange that the term ethernet refers to wired communication. Sure, there are wireless devices, but that’s not really ethernet. [Jacek] had the same thought, but decided to do something about it.

What he did is use two different techniques to alter the electromagnetic emission from an ethernet adapter on a Raspberry Pi. The different conditions send Morse code that you can receive at 125 MHz with a suitable receiver.

Practical? Hardly, unless you are looking to exfiltrate data from an air-gapped machine, perhaps. But it does have a certain cool factor. The first method switches the adapter between 10 Mbps and 100 Mbps. The second technique uses a stream of data to accomplish the modulation. The switching method had a range of around 100 meters while the data-based method topped out at about 30 meters. The code is on GitHub if you want to replicate the experiment.

There is plenty of precedent for this sort of thing. In 1976 Dr. Dobb’s Journal published an article about playing music on an Altair 8800 by running code while an AM radio was nearby. We’ve seen VGA adapters forced to transmit data, too.

Continue reading “Ethernet Goes To The Ether”

From Trash PPE To New PPE

As the coronavirus pandemic circles the world, a fact of daily life for millions of people has become the wearing of a face mask. Some people sport colorful fabric masks, but for many, this means the ubiquitous Chinese disposable mask. They have become the litter of our time, which as [blorgggg] notes is something that shouldn’t have to be the case. Their plastic can be recycled and made into other useful things, for example, ear savers similar to the ones many of us were 3D printing earlier in the year.

As you might imagine diving into a pile of used masks can be a little unhygienic, so the first step is to disinfect with alcohol. Then the various layers can be separated and the outer polypropylene ones collected and stacked between baking parchment to be melted on a skillet. The result is a polypropylene sheet that can be laser cut if it is thick enough, and from this are cut the ear savers. It’s not quite as neat a cut as the acrylic sheet we may be used to, but it’s adequate for the task.

While on the subject of masks, earlier in the year we presented a series in whose first part we dissected a selection.