Building A Big Ol’ Powerful Wheelbarrow

Sometimes you’ve gotta haul big heavy loads around a wide area. Regular wheelbarrows are fine, but it can quickly grow tiring when one has to make multiple trips. [Workshop from Scratch] instead elected to build a powered wheelbarrow, with plenty of grunt to shift loads about.

The build is absolutely from the ground up, welded up from sections of steel RHS, and given rear steering for plenty of maneuverability. The actual job of steering is handled by a rack repurposed from automotive use, set up with a single-sided attachment to the rear wheel assembly. It’s quite a neat and tidy way of doing the job, and seems to work well. Drive is sent to the front wheels through a hydrostatic lawnmower transmission. A 17-horsepower engine provides plenty of grunt for the job at hand, even coming with electric start already fitted for the ultimate in ease-of-use.

It’s impressive to see just how much of the rig was put together from raw materials; even the fuel tank was fabricated in steel. We’ve seen similar builds from [Workshop from Scratch] before, like this tidy bandsaw. Video after the break.

Continue reading “Building A Big Ol’ Powerful Wheelbarrow”

You Can’t Fix What You Can’t Measure

Last year, as my Corona Hobby™, I took up RC plane flying. I started out with discus-launched gliders, and honestly that’s still my main love, but there’s only so much room for hackery in planes that are designed to be absolutely minimum weight and maximum performance; these are the kind of planes that notice an extra half gram in the tail. So I’ve also built a few crude workhorse planes — the kind of things that you could slap a 60 g decade-old GoPro on and it won’t even really notice. Some have ended their lives in trees, but most have been disassembled and reincarnated — the electronics live on in the next body.

The journey has been really fun. I’ve learned about aerodynamics, gotten an excuse to put together a 4-axis hot-wire CNC styrofoam cutter, and covered everything in sight with carbon fiber tow, which is cheaper than you might think but makes the plane space-age. My current workhorse has bolted on an IMU, GPS, and a minimal Ardupilot setup, though I have yet to really put it through its paces. What’s holding me back is the video link — it just won’t work reliably further than a few hundred meters, and I certainly don’t trust it to get out of line-of-sight.

My suspicion is that the crappy antennas I have are holding me back, which of course is an encouragement to DIY, but measuring antennas in the 5.8 GHz band is tricky. I’d love to just be able to buy one of the cheap vector analyzers that we’ve covered in the past — anyone can make an antenna when they can see what they’re doing — but they top out at 2.4 GHz or lower. No dice. I’m blind in 5.8 GHz.

Of course, I do have one way in, and that’s tapping into the received signal strength indicator (RSSI) of a dedicated 5.8 GHz receiver, and just testing antennas out in practice, but that only gives a sort of loose better-worse indication. More capacitance or more inductance? Plates closer together or further apart? Try it out and see, I guess, but it’s time-consuming.

Moral of the story: don’t take measurement equipment for granted. Imagine trying to build an analog circuit without a voltmeter, or to debug something digital without a logic probe. Sometimes the most important tool is the one that lets you see the problem in the first place.

Fractal Vise Holds Odd-Shaped Objects Tight

A regular vice is great if you want to clamp rectangular objects, but it can fall down a little with more complex shapes. Inspired by an ancient vise [Chris Borge] whipped up his own 3D-printed fractal clamping tool.

The inspiration for this one comes from the [Hand Tool Rescue] video that shows of the clever mechanism. The vice uses a series of interlocking parts that can freely articulate to grip the object of interest via several protruding fingers. In reproducing the design, [Chris] had some issues initially with the joints, but settling on a dovetail similar to that of the original metal vice which got things working nicely.

[Chris] notes that while the design works, it could still use some refinement. Silicone or rubber tips on the fingers could give the vice better grip, and there remain some flexural issues that could be improved. Overall, however, it’s a useful table vice for small jobs on weird shaped things. We’ve seen 3D-printed vices before, particularly in the PCB vice space, but the grip scheme user here is totally unique.

Continue reading “Fractal Vise Holds Odd-Shaped Objects Tight”

Up Close And Personal With Some Busted Avionics

When he found this broken Narco DME 890 that was headed for the trash, [Yeo Kheng Meng] did what any self-respecting hardware hacker would do: he took it back to his workbench so he could crack it open. After all, it’s not often you get to look at a piece of tech built to the exacting standards required by even outdated avionics.

DME stands for “Distance Measuring Equipment”, and as you might expect from the name, it indicates how far the aircraft is from a given target. [Yeo Kheng Meng] actually goes pretty deep into the theory behind how it works in his write-up if you’re interested in the nuts and bolts of it all, but the short version is that the pilot selects the frequency of a known station on the ground, and the distance to the target is displayed on the screen.

Inside the device, [Yeo Kheng Meng] found several densely packed boards, each isolated to minimize interference. The main PCB plays host to the Mostek MK3870 microcontroller, an 8-bit chip that screams along at 4 MHz and offers a spacious 128 bytes of RAM. It doesn’t sound like much to the modern AVR wrangler, but for 1977, it was cutting edge stuff.

Digging further, [Yeo Kheng Meng] opens up the metal cans that hold the transmitter and receiver. Thanks to the excellent documentation available for the device, which contains extensive schematics and block diagrams, he was able to ascertain the function of many of the components. Even if you’re unlikely to ever go hands on with this type of technology, it’s fascinating to see the thought and attention to detail that goes into even seemingly mundane aspects of the hardware.

Hungry for more airworthy engineering? We’ve taken a close look at some hardware pulled from a civilian airliner, as well as some battle-hardened electronics that once graced the cockpit of an AH-64 Apache attack helicopter.

Home Automation For Fans Of Quick-and-Dirty Solutions

At Hackaday, we celebrate all kinds of projects, but we’ll have to admit that the polished and professional-looking builds tend to catch our eye a lot more than perhaps they should. There’s plenty of love to be had for the rougher builds, though, of which this quick-and-dirty home automation system is a perfect example.

Before anyone rushes to state the obvious with, “Should have used some relays,” consider that [MAKE_IT_WITH_ME]’s stated goal was to get the basics of a home automation system built with pretty much nothing but what can be found in one of those Arduino starter kits. And further, consider that landlords might not look kindly on tenants who wire a bunch of SSRs or Sonoff switches into the walls of their building. So this minimalist build is perfect for certain use cases. Its interface to the building’s electrical system is 100% mechanical, via a servo that travels along the bank of switches on a stepper-driven leadscrew. The servo has a modified horn to properly flick the rocker-style switches, and although changing from switch to switch is a bit slow, it works surprisingly well. The video below shows it in action.

While we can see it possibly working as-is for Decora-style switches that are seen in some markets, we’d think some mods would be in order for the more standard toggle-style switch — perhaps a finger extending out from the horn, along with a second servo to tilt the whole assembly away from the wall to allow it to clear the switch bats.

Continue reading “Home Automation For Fans Of Quick-and-Dirty Solutions”

3D Printed Copper Rocket Nozzle Costs Under Two Grand

You don’t think of hobby-grade 3D printing as a good method for creating rocket nozzles. But [Mister Highball] managed to create a copper nozzle using a common printer, a kiln, and some special copper-bearing filament.

The copper filament is about 90% metal. Virtual Foundry recommends preheating it before printing and you have to sinter it in an oven to remove the plastic and leave a solid metal piece which will, of course, shrink.

Continue reading “3D Printed Copper Rocket Nozzle Costs Under Two Grand”

Custom Car Horn Makes Many Sounds

A regular car horn is fine, but lacks finesse for more subtle communication. For example, some car horns aren’t particularly adept at short indicatory honks, and can only blare loudly regardless of the situation. For a fancier solution, [Tom Hammond] whipped up a custom car horn capable of playing a wide variety of sounds.

The system uses the Adafruit Audio FX board. This is a unique part, which is designed to enable people to build sound-based projects without the need for a microcontroller or any other similar hardware. Instead, the device can be connected to a computer over USB in mass storage mode, and its 16MB in-built memory can be loaded with sound files. It then plays these when buttons are pressed, hooked up to its 11 trigger inputs.

The Audio FX board has its output hooked up to a 120W amplifier, which then feeds into a pair of 15W PA-style horns. These are incredibly loud devices, though lack bass, so they’re really only good for throwing low-quality sound out in a noisy environment. For a car horn, that’s perfect.

The result is that [Tom] can press a number of buttons on his dash to play different sounds, from courtesy honks to animal noises and obnoxious sound effects. The great thing is that the sounds in question can be easily customized to the user’s tastes. [Tom] also deserves a tip of the hat for explaining in great detail how to actually install the project in the average car.

We don’t often see car horns around these parts, though they do make for an awfully loud alarm clock. If you’ve got your own nifty car accessories that you’re cooking up, be sure to drop us a line!