SAMD11 Provides Two Serial Ports For Price Of One

While the average computer user likely hasn’t given much thought to the lowly serial port in decades, the same can’t be said for the hardware hacker. Cheap serial-to-USB adapters are invaluable for snooping debug ports or programming chips, and if you ask us, you can never have too many laying around the bench. [Quentin Bolsée] loves them so much that he’s even figured out how to build a dual-port adapter with a SAMD11C14 microcontroller.

As [Quentin] explains in the write-up, this isn’t just some kind of Y-cable. When connected to the host computer, the adapter shows up as two distinct serial ports, each with independent settings for things like baud rate and parity. This handy little gadget will let you tap into the serial ports of two devices simultaneously if you’re looking to do some Hollywood-style hacking, but more practically, it allows you to establish a debug and programming interface to the same board using just one USB connection.

[Quentin] milled a custom PCB for his adapter, which we have to say looks phenomenal, but those with more limited equipment at home should be able to send the MIT licensed board files off for production. He’s also provided the source code for the SAMD11C14’s firmware, so you’ve got everything you need to spin up your own version of this neat tool.

Two ports not enough for your parallel hacking needs? Believe it or not, we’ve also seen a quad USB-to-serial adapter that you can put together, though it’s a considerably more complex circuit.

A Gorgeous Desk With AMD Inside

We’re the first to admit that we don’t see much woodworking here at Hackaday. But this desk with a PC inside from [John Heisz] is just too gorgeous not to share.

The build is mostly cherry veneered half-inch plywood and real cherry. There are dozens of angles and complex pieces that all fit together in a valuable and powerful desk. The centerpiece of the desk is the air intake grill with a 2019 Apple Mac Pro-like finish. [John] mentions that he previously did it by hand with just a parked drill bit and some patience, but he vastly prefers the automated way. Two cubbies flank the center vent, made from plywood with cherry veneers glued on. A USB hub is hidden at the back in one of the cubbies, exposing all the I/O for the AMD-powered desktop PC hidden inside. The top of the desk is hinged to allow easy access to the PC. [John] asserts that he made the coolest desk in the known universe. We don’t know if we can say it’s the coolest, but we certainly appreciate the process and expertise that made it.

After you’ve finished your new desk build inspired by [John]’s project, perhaps you might be interested in a levitating turbine desk toy to seal the deal. Video after the break.

Continue reading “A Gorgeous Desk With AMD Inside”

Flaw In AMD Platform Security Processor Affects Millions Of Computers

Another day, another vulnerability. This time, it’s AMD’s turn, with a broad swathe of its modern CPU lines falling victim to a dangerous driver vulnerability that could leave PCs open to all manner of attacks.

As reported by TechSpot, the flaw is in the driver for AMD Platform Security Processor (PSP), and could leave systems vulnerable by allowing attackers to steal encryption keys, passwords, or other data from memory. Today, we’ll take a look at what the role of the PSP is, and how this vulnerability can be used against affected machines.

Continue reading “Flaw In AMD Platform Security Processor Affects Millions Of Computers”

ReactOS Is Going Places, With More Stable AMD64, SMP, And Multi-Monitor Support

In the crowd of GNU/Linux and BSD users that throng our community, it’s easy to forget that those two families are not the only games in the open-source operating system town. One we’ve casually kept an eye on for years is ReactOS, the long-running open-source Windows-compatible operating system that is doing its best to reach a stable Windows XP-like experience. Their most recent update has a few significant advances mentioned in it that hold the promise of it moving from curiosity to contender, so is definitely worth a second look.

ReactOS has had 64-bit builds for a long time now, but it appears they’ve made some strides in both making them a lot more stable, and moving away from the MSVC compiler to GCC. Sadly this doesn’t seem to mean that this now does the job of a 64-bit Windows API, but it should at least take advantage internally of the 64-bit processors. In addition they have updated their support for the Intel APIC that is paving the way for ongoing work on multiprocessor support where their previous APIC driver couldn’t escape the single processor constraint of an original Intel 8259.

Aside from these its new-found support for multiple monitors should delight more productive users, and its improved support for ISA plug-and-play cards will be of interest to retro enthusiasts.

We took a close look at the current ReactOS release when it came out last year, and concluded that its niche lay in becoming a supported and secure replacement for the many legacy Windows XP machines that are still hanging on years after that OS faded away. We look forward to these and other enhancements in their next release, which can’t be far away.

AMD’s Threadripper Is The Beating, Heating Heart Of “Most Powerful” DIY Laptop

There are plenty of powerful, “desktop-replacement” laptops out on the market if you’ve got the money to spend. Sometimes, though, that just doesn’t scratch that crazy itch in the back of your head for true, unbridled computing power. When you’ve got an insatiable thirst for FLOPS, you’ve got to strike out on your own, as [Jeff] did with this Threadripper laptop.

The aim was to pack an AMD Threadripper processor into a nominally portable laptop format. For this build, the AMD 1950X was chosen for its affordability and huge computing power, as well as a TDP of 180W. This high heat output has stopped the chips ending up in portable builds until now, but [Jeff] didn’t see this as a problem, but a challenge.

What results is a wild, lashed together build of high-power parts into what could charitably be called a laptop – though we’d recommend against putting it on your lap. With a 4K 18″ screen, keyboard, touchpad, and many Dell Powerbanks kludged together into an HP Media Center case, it fits the usual form factor, albeit with more exposed heatpipes and cables than the typical consumer may be used to.

[Jeff] claims this is the current most powerful laptop in the world, as builds that use the 3950X throttle it back in their applications. We don’t have the data to compare, but we certainly wouldn’t be stacking our own portable rig up against it in a fight. DIY laptops have a long history at Hackaday, going all the way back to 2007. If you’ve got your own wild build, be sure to drop us a line. Video after the break.

Continue reading “AMD’s Threadripper Is The Beating, Heating Heart Of “Most Powerful” DIY Laptop”

Extracting A Gate From AMD And Intel

The competition between Intel and AMD has been heating up in the last few years as Intel has released chips fabbed with their 14nm++ process and AMD has been using TMSC’s 7nm process. In the wake of the two semiconductor titans clashing, a debate between the merits of 14nm++ and 7nm has sprung up with some confusion about what those numbers actually measure. Not taking either number at their face value, [der8auer] decided to extract a transistor from both Intel’s and AMD’s latest offerings to try and shed some light.

Much of the confusion comes from the switch to the FinFET process. While older planar transistors could be thought of as largely 2d structures, FinFET’s are three dimensional. This means that the whole vertical fin can act as a gate, greatly reducing leakage. It is this fin or gate that [der8auer] is after. On each chip, a thin sliver from the L1 cache was chosen as caches tend to be fairly homogenous sections with transistors that are fairly indicative of the rest of the chip. Starting with a platinum gas intersecting with a focused ion beam on the surface of the chip, [der8auer] built a small deposit of platinum over several hours. This deposit protects the chip when he later cut it at an angle, forming a small lamella 100 micrometers long. In order for the lamella to be properly imaged by the scanning electron microscope, it needed to be even thinner (about 200 to 300nm).

Eventually, [der8auer] was ultimately able to measure the gate height, width, spacing, and other aspects of these two chips. The sheer amount of engineering and analysis that went into this project is remarkable and we love the deep dive into the actual gates that make up the processors we use. If you’re looking for a deep dive into the guts of a processor but perhaps at a more macro scale, why not learn about a forgotten Intel chip from the 1970s?

Continue reading “Extracting A Gate From AMD And Intel”

AMD Acquires Xilinx For $35 Billion

News this morning that AMD has reached an agreement to acquire Xilinx for $35 Billion in stock. The move to gobble up the leading company in the FPGA industry should come as no surprise for many reasons. First, the silicon business is thick in the age of mergers and acquisitions, but more importantly because AMD’s main competitor, Intel, purchased the other FPGA giant Altera back in 2015.

Primarily a maker of computer processors, AMD expands into the reconfigurable computing market as Field-Programmable Gate Arrays (FPGA) can be adapted to different tasks based on what bitstream (programming information written to the chips) has been sent to them. This allows the gates inside the chip to be reorganized to perform different functions at the hardware level even after being put into products already in the hands of customers.

Xilinx invented the FPGA back in the mid-1980s, and since then the falling costs of silicon fabrication and the acceleration of technological advancement have made them evermore highly desirable solutions. Depending on volume, they can be a more economical alternative to ASICs. They also help with future-proofing as technology not in existence at time of manufacture — such as compression algorithms and communications protocols — may be added to hardware in the field by reflashing the bitstream. Xilinx also makes the Zynq line of hybrid chips that contain both ARM and FPGA cores in the same device.

The deal awaits approval from both shareholders and regulators but is expected to be complete by the end of 2021.