Retro Recreations Hack Chat With Tube Time

Join us on Wednesday, March 17 at noon Pacific for the Retro Recreations Hack Chat with Tube Time!

join-hack-chatNostalgia seems to be an inevitable consequence of progress. Advance any field far enough into the future, and eventually someone will look back with misty eyes and fond memories of the good old days and start the process of turning what would qualify as junk under normal conditions into highly desirable collectibles.

In some ways, those who have been bitten by the computer nostalgia bug are lucky, since the sheer number of artifacts produced during their period of interest is likely to be pretty high, making getting gear to lovingly restore relatively easy. But even products produced in their millions can eventually get difficult to find, especially once they get snapped up by eager collectors, leaving the rest to make do or do without.

Of course, if you’re as resourceful as Tube Time is, there’s another alternative: build your own retro recreations. He has embarked on some pretty intense builds to recapture a little of what early computer enthusiasts went through trying to build useful machines. He has built replicas of early PC sound cards, like an ISA-bus AdLib card, its MCA equivalent, and the “Snark Barker”— or is it the “Snood Bloober”? — which bears an uncanny resemblance to the classic Sound Blaster card from the 1980s.

Tube Time will join us for the Hack Chat this week to answer questions about all his retro recreations, including his newest work on a retro video card. Be sure to bring your questions on retro rebuilds, reverse engineering, and general computer nostalgia to the chat.

Our Hack Chats are live community events in the Hackaday.io Hack Chat group messaging. This week we’ll be sitting down on Wednesday, March 17 at 12:00 PM Pacific time. If time zones have you tied up, we have a handy time zone converter.

Click that speech bubble to the right, and you’ll be taken directly to the Hack Chat group on Hackaday.io. You don’t have to wait until Wednesday; join whenever you want and you can see what the community is talking about.
Continue reading “Retro Recreations Hack Chat With Tube Time”

There’s A Fungus Among Us That Absorbs Sound And Does Much More

Ding dong, the office is dead — at least we hope it is. We miss some of the people, the popcorn machine, and the printer most of all, but we say good riddance to the collective noise. Thankfully, we never had to suffer in an open office.

For many of us, yours truly included, home has become the place where we spend approximately 95% of our time. Home is now an all-purpose space for work, play, and everything in between, like anxiety-induced online shopping. But unless you live alone in a secluded area and/or a concrete bunker, there are plenty of sound-based distractions all day and night that emanate from both inside and outside the house. Headphones are a decent solution, but wearing them isn’t always practical and gets old after a while. Wouldn’t it be nice to be able to print your own customized sound absorbers and stick them on the walls? Continue reading “There’s A Fungus Among Us That Absorbs Sound And Does Much More”

Cricut Decides To Charge Rent For People To Fully Use The Cutting Machines They Already Own

UPDATE: Hackaday was contacted by a PR company claiming to represent Cricut. They clarified that machines are not deactivated upon resale, but the new owner will need to set up their own online account.

UPDATE #2 (3/21/21): In the wake of this controversy, Cricut have announced that they will not move forward with the upload limit for customers who are not paying subscribers.

In our community we like to think of ourselves as pioneers in the field of domestic CNC machinery, with our cheap 3D printers. But there’s another set of people who were way ahead of us, and they’re a rather unexpected one, too. Crafters were using CNC cutting machines well before we were, and while some may deride them when used for sparkly greeting cards sold on Etsy, they can be an extremely useful tool for much more than that. Probably the best known brand of cutter comes from Cricut, and that company has dropped a bombshell in the form of an update to the web-based design software that leaves their now very annoyed users with a monthly upload limit of 20 new designs unless they sign up for a Cricut Access Plan that costs $9.99 on monthly payments. Worse still, a screenshot is circulating online purporting to be from a communication with a Cricut employee attempting to clarify  matters, in which it is suggested that machines sold as second-hand will be bricked by the company.

Also, soon we will be making changes that affect members who use the free Design Space app without a Cricut Access plan. Every calendar month, these members will be allowed to upload up to 20 personal images and/or patterns. Members with a paid Cricut Access plan will have unlimited uploads.

We’d like to think that given the reaction from their online community the subscription plan will backfire, but unlike the world of 3D printing their market is not necessarily an online-savvy one. A crafter who buys a Cricut from a bricks-and-mortar warehouse store and uses it with Cricut cartridges may not balk at being required to pay rent to use hardware that’s already paid for in the same way a member of our community with a 3D printer would. After all, Cricut have always tried to make their software a walled garden. However if the stories about second-hand models being bricked turn out to bear fruit that might be a different matter.

There are of course plenty of alternative CNC cutting machines (The favourite in ones that have made it here seems to be the Silhouette Cameo) that don’t come with this type of baggage, and the online Cricut community are busily raising their profile in the wake of this news. Probably because of their restricted functionality there have been very few hacks here using a Cricut machine, but all of this leaves us wondering whether the machines themselves could be exploited to take less restrictive firmware.

Header image: Factorof2 (CC BY-SA 2.0)

Injecting Bugs With An Electric Flyswatter

Hardware fault injection uses electrical manipulation of a digital circuit to intentionally introduce errors, which can be used to cause processors to behave in unpredictable ways. This unintentional behavior can be used to test for reliability, or it can be used for more nefarious purposes such as accessing code and data that was intended to be inaccessible. There are a few ways to accomplish this, and electromagnetic fault injection uses a localized electromagnetic pulse to flip bits inside a processor. The pulse induces a voltage in the processor’s circuits, causing bits to flip and often leading to unintentional behavior. The hardware to do this is very specialized, but [Pedro Javier] managed to hack a $4 electric flyswatter into an electromagnetic fault injection tool. (Page may be dead, try the Internet Archive version.)

[Pedro] accomplishes this by turning an electric flyswatter into a spark-gap triggered EMP generator. He removes the business end of the flyswatter and replaces it with a hand-wound inductor in series with a small spark gap. Pressing the power button on the modified flyswatter charges up the output capacitor until the developed voltage is enough to ionize the air in the spark gap, at which point the capacitor discharges through the inductor. The size of the spark gap determines the charge that is built up—a larger gap results in a larger charge, which produces a larger pulse, which induces a larger voltage in the chip.

[Pedro] demonstrates how this can be used to produce arithmetic glitches and even induce an Arduino to dump its memory. Others have used electromagnetic fault injection to corrupt SRAM, and intentionally glitching the power supply pins can also be used to access otherwise protected data.

Rocket Lab Plans Larger Neutron Rocket For 2024

When Rocket Lab launched their first Electron booster in 2017, it was unlike anything that had ever flown before. The small commercially developed rocket was the first to use fully 3D printed main engines, and instead of pumping its propellants with traditional turbines, the vehicle used electric motors that jettisoned their depleted battery packs overboard during ascent to reduce weight. It even looked different than its peers, as rather than a metal fuselage, the Electron was built from a lightweight carbon composite which gave it a distinctive black color scheme.

Packing so many revolutionary technical advancements into a single vehicle was a risk, but Rocket Lab founder Peter Beck believed a technical shakeup was the only way to get ahead in an increasingly competitive market. While that first launch in 2017 didn’t make it to orbit, the next year, Rocket Lab could boast three successful flights. By the end of 2020, a total of fifteen Electron rockets had completed their missions, carrying payloads from both commercial customers and government agencies such as NASA, the United States Air Force, and DARPA.

Rocket Lab’s gambit paid off, and the company has greatly outpaced competitors such as Virgin Orbit, Astra, and Relativity. In fact Electron is now the second most active orbital booster in the United States, behind SpaceX’s Falcon 9. Considering their explosive growth, it’s only natural they’d want to maintain that momentum going forward. But even still, the recent announcement that the company will be developing a far larger rocket they call Neutron to fly by 2024 took many in the industry by surprise; especially since Peter Beck himself had previously said they would never build it.

Continue reading “Rocket Lab Plans Larger Neutron Rocket For 2024”

Photorender Your 3D Models

Of course, you’ll want to take your latest 3D design and print it so you’ll have a physical object. But in some cases, you’d like to have a rendering of it. If you use OpenSCAD, FreeCAD, or most other CAD programs you can get a simple rendering of your object, but what if you want something that looks real? [Teaching Tech] shows how you can use a website, Vectary, to get realistic photo renderings of your 3D models. (Video, embedded below.) The free plan has a few limits, but nothing that should bother most people.

Vectary is sort of like a super version of TinkerCad with a lot of options for realistic modeling and augmented reality. Some of the more advanced features are behind a subscription plan, but for what [Teaching Tech] is showing, you can use the free plan.

Continue reading “Photorender Your 3D Models”

Custom Dummy Load With Data Logging

While it might seem counterintuitive on the surface, there are a number of cases where dumping a large amount of energy into a resistor simply to turn it into heat is necessary to the operation of a circuit. Most of these cases involve testing electronic equipment such as power supplies or radio transmitters and while a simple resistor bank can be used in some situations, this active dummy load is comprised of different internals has some extra features to boot.

The load bank built by [Debraj] is actually an electronic load, which opens it up for a wider set of use cases than a simple passive dummy load like a resistor bank. It’s specifically designed for DC and also includes voltage measurement, current control, and temperature measurement and speed control of the fans on the heat sinks. It also includes a Bluetooth module that allows it to communicate to a computer using python via a custom protocol and GUI.

While this one does use a case and some other parts from another product and was specifically built to use them, the PCB schematics and code are all available to build your own or expand on this design. It’s intended for DC applications, but there are other dummy loads available for things such radio antenna design, and it turns out that you can learn a lot from them too.

Continue reading “Custom Dummy Load With Data Logging”