Weird Trashcan Is Actually Advanced 1990s Robot

[Clay Builds] found a bit of a gem at a recent auction, picking up a Nomadic Technologies N150 robot for just $100. It actually looks like something out of science fiction, with its cylindrical design, red bumpers, and many sensors. He decided to try and restore the research-grade robot to functionality with the aid of modern hardware.

Right away, it’s clear this was an expensive and serious bit of kit. It’s full of hardcore gears and motors for driving three rubber-tired wheels, each of which has a pivoting mount for steering the thing. Through his research, [Clay] was able to find some ancient websites documenting university work using the robots. His understanding is that the platform was designed for researchers experimenting with simultaneous localization and mapping (SLAM) algorithms, and other robotic navigation tasks.

[Clay] doesn’t just settle for a teardown, though. He’s been able to get the platform running again in one sense, using an Arduino to manually run the robot’s drive controls under the command of a gamepad. Without official software or resources, it’s perhaps unlikely he’ll be able to get the stock hardware to do much without completely rebraining it, so this method makes sense. In future he hopes to get the bumper sensors and sonar modules working too.

It’s a fair effort given [Clay] was working with no documentation and no supporting software. We’ve seen similar efforts for robotic arms before, too. Video after the break.

Continue reading “Weird Trashcan Is Actually Advanced 1990s Robot”

a) Schematic illustration of energy storage process of succulent plants by harnessing solar energy with a solar cell, and the solar cell converts the energy into electricity that can be store in APCSCs of succulent plants, and then utilized by multiple electrical appliances. b–d) The energy is stored in cactus under sunlight by solar cell and then power light strips of Christmas tree for decoration.

Succulents Into Supercapacitors

Researchers in Beijing have discovered a way to turn succulents into supercapacitors to help store energy. While previous research has found ways to store energy in plants, it often required implants or other modifications to the plant itself to function. These foreign components might be rejected by the plant or hamper its natural functions leading to its premature death.

This new method takes an aloe leaf, freeze dries it, heats it up, then uses the resulting components as an implant back into the aloe plant. Since it’s all aloe all the time, the plant stays happy (or at least alive) and becomes an electrolytic supercapacitor.

Using the natural electrolytes of the aloe juice, the supercapacitor can then be charged and discharged as needed. The researchers tested the concept by solar charging the capacitor and then using that to run LED lights.

This certainly proposes some interesting applications, although we think your HOA might not be a fan. We also wonder if there might be a way to use the photosynthetic process more directly to charge the plant? Maybe this could recharge a tiny robot that lands on the plants?

An RC Tank Chassis That’s Not Messing About

It’s not uncommon to see a tracked robot build on these pages, but it’s fair to say that many of them are somewhat on the small side. That was where [iforce2d] started, but the idea of making a more capable version just wouldn’t go away. Thus, he’s come back and made what looks to be a very promising, fully capable outdoor RC tank chassis, one that, within reason, we think should eventually be able to go anywhere.

For plenty of power, he’s using a pair of hoverboard motors with a chain reduction drive and in turn, a couple of shafts to the tracks. The chassis is a TIG-welded aluminium affair, while the tracks are an early incarnation with machined MDF drive wheels and a homemade tread. The suspension is a work of machined-aluminium art, though, and while there are teething troubles as he takes it for a spin, we can see plenty of potential as its deficiencies are ironed out.  Take a look at it in the video below the break.

If large-size R/C tanks are your thing, we have another for you to look at.

Continue reading “An RC Tank Chassis That’s Not Messing About”

Infrared Following Robot Built As Proof-of-Concept For Autonomous Luggage

Once upon a time, the poor humans of the past had to lug around suitcases and trunks with their own arms. Then, some genius figured out that you could just put wheels on and make everyone’s life a million times easier. Now, what if you didn’t even have push, because your luggage could just follow you instead? Well, students [Yuqiang Ge] and [Yiyang Zhao] have figured out a proof of concept for how that could work.

Their build is a small robotic platform that they assembled for their ECE5730 final project. The tiny wheeled robot is programmed to rotate on the spot until its infrared sensors pick up a signal. In turn, the user is intended to carry an infared beacon for it to lock onto. A pair of sensors are used on the robot platform, separated by a board to serve as a blind. The robot determines the relative signal strength from each sensor, and uses that to vary PWM signals to the two DC drive motors to steer the robot platform to seek and follow the infrared beacon.

It’s a neat idea, and looks to work pretty well in a university corridor. It even has an ultrasonic range sensor to (ideally) stop when it gets too close to the user. Whether it would survive the tumult of a crowded airport is another thing entirely, but that’s what the engineering process is about. Indeed, the very concept has been commercialized already!

Following-robots are a common student project, and one well worth exploring if you’re new to the robotic field.

Continue reading “Infrared Following Robot Built As Proof-of-Concept For Autonomous Luggage”

Robotic Rose Of Enchantment Drops Petals On Command

In Disney’s 1991 film Beauty and the Beast, an enchantress curses the young (10 or 11-year-old) prince to beast-hood for spurning her based solely on her appearance. She gives him a special rose that she says will bloom until his 21st birthday, at which time he’ll be turned back into a prince, provided that he learned to love by then. If not, he’ll be a beast for eternity. As the years go by, the rose drops the occasional petal and begins to wilt under the bell jar where he keeps it.

[Gord Payne] was tasked with building such a rose of enchantment for a high school production and knocked it out of the park. With no budget provided, [Gord] used what he had lying about the house, like nylon trimmer line. In fact, that’s probably the most important part of this build. A piece of trimmer line runs up through the stem made of tubing and out the silk rose head, which connects with a custom 3-D printed part.

Each loose petal hangs from the tubing using a short length of wire. Down at the base, the trimmer line is attached to a servo horn, which is connected to an Adafruit Circuit Playground. When the button is pressed on the remote, the servo retracts the trimmer line a little bit, dropping a petal. Be sure to check out the demo after the break.

Dropping petals is an interesting problem to solve. Most of the flower hacks we see around here involve blooming, which presents its own set of troubles.

Continue reading “Robotic Rose Of Enchantment Drops Petals On Command”

The Logg Dogg: How A Mysterious Logging Robot Leads Down Twisting Forestry Paths

There are many places where you’d want to use remotely controlled robots, but perhaps forestry isn’t the first application to come to mind. Yet there are arguments to be made for replacing something like a big logging machine with grapple for a much smaller robot. The reduced ground pressure can be beneficial in fragile ecosystems, and removing the operator is much safer if felling a tree goes wrong.

This is where a US company called Forest Robots tried to come in, with their Logg Dogg, of which [Wes] over at Watch Wes Work found a very unique prototype abandoned in a barn, courtesy of Zuckerberg’s marketplace of wonders.

One of the two receivers on the Forest Robots' Logg Dogg logging robot prototype. (Credit: Watch Wes Work)
One of the two receivers on the Forest Robots’ Logg Dogg logging robot prototype. (Credit: Watch Wes Work)

After lugging the poor abandoned robot back into a warm repair shop, he set to work on figuring out what it was that he had bought. At the time he knew only that it was some kind of logging robot, but with no model number or name on the robot, it was tough to find information. Eventually he got tipped off about it being the Logg Dogg, with even a video of the robot in action, helpfully uploaded to YouTube by [Hankey Mountain Garage] and embedded below for your viewing pleasure.

As [Wes] noticed during teardown and inspection was that it has that distinct mix-and-match feel to it of a prototype, ranging from metric and US customary bolts to both European and US/Canadian supplied components. Although it has two RF receivers on the device, no remote(s) came with the device, and the seller only knew that it was already in the barn when they purchased the place. After getting the engine working again on the robot, [Wes] contacted one of the people behind the robot: [Dean Edwards], a professor at the University of Idaho, hoping to learn more about this robot and how it ended up abandoned in a barn.

Hopefully we’ll find out in a Part 2 whether [Wes] got a response, and whether this robot will get a second chance at life. Meanwhile, in countries such as Portugal such robots are already finding significant use, including for fire protection in its forests, tackling difficult terrain more easily than humans. With forest fires an increasing risk, perhaps the Logg Dogg and kin could find a use there.

Continue reading “The Logg Dogg: How A Mysterious Logging Robot Leads Down Twisting Forestry Paths”

Anthrobots can promote gap closures on scratched live neuronal monolayers. (Credit: Gumuskaya et al., 2023)

Anthrobots: Tiny Robots From Tracheal Epithelium Cells That Can Fix Neural Damage

Although we often regard our own bodies and those of the other multicellular organisms around us as a singular entity, each cell that makes up our body is its own, nano-robot. One long-existing question was whether these cells can be used for other tasks — like biological robots — after they have specialized into a specific tissue type, with a recent study by [Gizem Gumuskaya] and colleagues in Advanced Science (with Nature news coverage) indicating a potential intriguing use of adult human epithelial cells recovered from the trachea.

Human bronchial epithelial cells self-construct into multicellular motile living architectures. (Credit: Gumuskaya et al., 2023)
Human bronchial epithelial cells self-construct into multicellular motile living architectures. (Credit: Gumuskaya et al., 2023)

After extraction, these adult cells were kept in an extracellular matrix (ECM, Matrigel) in conditions promoting cell division, followed by ECM dissolution after 14 days and subsequent culturing of the spherical clumps of cells that had thus formed in a water-based, low-viscosity environment. This environment, along with the addition of retinoic acid promoted the development of outward-facing cilia, rather than the typical inward type with a gel-based ECM.

These spheroids (anthrobots, referencing their human origin) generally showed the ability to move using these cilia, with the direction largely determined by the symmetry of the sphere. Multiple of these motile spheroids were then placed on a layer of human neural tissue, in which a scratch had damaged a number of the neurons to form a gap. The anthrobots grouped together over the course of days to form a bridge across the gap, with the neural tissue observed to regrow underneath this bridge, a behavior that could not be repeated by using a dummy support consisting out of agarose on another neural sample, indicating that it is this living bridge that enabled neural regeneration.

Although the researchers rightfully indicate that they are uncertain which factors actually induce this restorative effect in the neurons, it offers exciting glimpses into a potential feature where neural damage is easily repaired, and biological robots made from our own cells can be assembled to perform a variety of tasks.