Typing By Slamming Your Laptop Closed. Repeatedly

Do you sometimes feel that your custom mechanical keyboard is not quite loud enough to proclaim your superior hacking powers? Or do you need a more forceful way shout in all caps at someone who is wrong on the internet? For all this and more, [Jesse Li] has got you covered, with a set of bash scripts that allows you to type by slamming your laptop closed repeatedly, using Morse code.

Not the fastest way to type, but definitely the most forceful

The scripts are quite simple, and work receiving the lid open/close events from ACPI (Advanced Configuration and Power Interface), recording the open and close timestamp and converting the timing to dots and dashes. After slamming to the required rhythm, you keep the lid open to see the character appear.

Why would want this? Well, you can now type the letter E by closing your laptop, instead of locking it. Maybe use it to send an emergency message while you’re being held by terrorists in a B-grade action movie. Otherwise, we think this is just an entertaining little hack that’s probably the product of quarantine induced boredom.

Morse code, otherwise known as CW, is still in surprisingly widespread use by ham radio operators, because it’s good at getting messages across intercontinental distances when signal conditions are bad and CW-only ham radio gear is cheap and easy to build yourself. We’ve also covered the Koch Method of learning CW, so don’t be afraid to dabble a bit during the quarantine.

NeoPixel Matrix Simulation Lets You Virtually Groove To The Lights

You are stuck at home quarantined and you want to do some Arduino projects. The problem is you don’t have all the cool devices you want to use. Sure, you can order them, but the stores are slow shipping things that aren’t essential these days. If you want to get a headstart while you are waiting for the postman, check out Wokwi’s Playground. For example, you can write code to drive a virtual NeoPixel 16×16 matrix. There’s even example code to get you started.

There are quite a few other choices in the playground including Charlieplexed LEDs, a keypad, and an LCD. There are also challenges. For example, in the traffic light challenge, you are given code that uses a task scheduler library to implement a traffic light. You have to add a turn signal to the code.

In addition to LEDs in various configurations, the site has some serial bus components, an LCD, a keypad, and a NeoPixel strip. There are also a few tools including an EasyEDA to KiCad converter and a way to share sourcecode similar to Pastebin.

Of course, simulations only get you so far, but the site is a fun way to play with some different I/O devices. It would be very nice if you could compose for the different components together, but you could work your code in sections, if necessary. You can do similar things with TinkerCad circuits. If you want to install software, there’s a simulator for you, too.

Self-Glowing Ring Is Its Own Battery

LED jewelry has always been a popular part of the maker community. Oftentimes, coin cells are used as a compact source of power, or wires are run to discreet hidden battery packs. [OguzC3] went another route, however, creating a glowing ring which works as its own battery.

The design will be familiar to those who have done high-school experiments on basic batteries. An aluminium pipe forms the inner surface of the ring, which is then wrapped in a layer of newspaper. A copper outer ring is then placed outside. When soaked in a salt water solution, this forms a basic battery. The voltage output is only around 0.5 volts, so a joule thief circuit is built into the ring to step this up high enough to drive an LED. [OguzC3] reports that the ring lasts several hours at a time, and only needs a quick rinse in fresh salty water to recharge.

It’s a creative concept, and the final piece looks like a magical object from the world of fantasy. It would make a great addition to any cosplay, and we’re sure the technique could be adapted to other accoutrements, too. A similar experiment done in a more extreme way is this electric car charged via lemons. If you’ve got your own battery chemistry project cooking up at home, be sure to let us know!

Can Solid Save The Internet?

We ran an article on Solid this week, a project that aims to do nothing less than change the privacy and security aspects of the Internet as we use it today. Sir Tim Berners-Lee, the guy who invented the World Wide Web as a side project at work, is behind it, and it’s got a lot to recommend it. I certainly hope they succeed.

The basic idea is that instead of handing your photos, your content, and your thoughts over to social media and other sharing platforms, you’d store your own personal data in a Personal Online Data (POD) container, and grant revocable access to these companies to access your data on your behalf. It’s like it’s your own website contents, but with an API for sharing parts of it elsewhere.

This is a clever legal hack, because today you give over rights to your data so that Facebook and Co. can display them in your name. This gives them all the bargaining power, and locks you into their service. If instead, you simply gave Facebook a revocable access token, the power dynamic shifts. Today you can migrate your data and delete your Facebook account, but that’s a major hassle that few undertake.

Mike and I were discussing this on this week’s podcast, and we were thinking about the privacy aspects of PODs. In particular, whatever firm you use to socially share your stuff will still be able to snoop you out, map your behavior, and target you with ads and other content, because they see it while it’s in transit. But I failed to put two and two together.

The real power of a common API for sharing your content/data is that it will make it that much easier to switch from one sharing platform to another. This means that you could easily migrate to a system that respects your privacy. If we’re lucky, we’ll see competition in this space. At the same time, storing and hosting the data would be portable as well, hopefully promoting the best practices in the providers. Real competition in where your data lives and how it’s served may well save the Internet. (Or at least we can dream.)

This article is part of the Hackaday.com newsletter, delivered every seven days for each of the last 200+ weeks. It also includes our favorite articles from the last seven days that you can see on the web version of the newsletter.

Want this type of article to hit your inbox every Friday morning? You should sign up!

Open Source Telescope Controller Puts Smart Features In Old Telescopes

In times like these, we all need to look beyond ourselves. This project might help: OnStep is an open-source telescope controller, a device that controls a telescope to point at something interesting in the sky. Want to take a look at M31? Use an app on a PC or smartphone, select the object and the OnStep will pan and tilt your telescope until the Andromeda Galaxy pops into view.

Continue reading “Open Source Telescope Controller Puts Smart Features In Old Telescopes”

Is This The Oldest Still-Working Geostationary Satellite?

The LES-5 spacecraft
The LES-5 spacecraft

Regular followers of space news will know that when satellites or space probes reach the end of their life, they either are de-orbited in a fiery re-entry, or they stay lifeless in orbit, often in a safe graveyard orbit where they are unlikely to harm other craft. Sometimes these deactivated satellites spring back into life, and there is a dedicated band of enthusiasts who seek out these oddities. Dead satellite finder extraordinaire [Scott Tilley] has turned up a particularly unusual one, a craft that is quite likely to be the oldest still-working geostationary satellite.

LES-5 is an experimental satellite built by MIT’s Lincoln Labs, launched in 1967, and used to test military UHF communications in a geosynchronous orbit. It had an active life into the early 1970s after which it was placed in a graveyard orbital slot for redundant craft. It’s lain forgotten ever since, until this month when [Scott]  found its beacon transmitting on 236.75 MHz. The Twitter thread is an extremely interesting glimpse into the satellite finder’s art, as first he’s not certain at all that it is LES-5 so he waits for its solar eclipse to identify its exact position.

Whether anything on the craft can find another use today is not certain, as he finds no evidence of its transponder. Still, that something is working again 53 years after its launch is a testament to the quality of its construction. Should its transponder be reactivated again it’s not impossible that people might find illicit uses for it, after all that’s not the first time this has happened.

Oscilloscope And Microscope Augmented With Ghosts

Augmented reality saw a huge boom a few years ago, where an image of the real world has some virtual element layer displayed on top of it. To get this effect to work, however, you don’t need a suite of software and smart devices. [elad] was able to augment a microscope with the output from an oscilloscope, allowing him to see waveforms while working on small printed circuit boards with the microscope.

The build relies on a simplified version of the Pepper’s Ghost illusion. This works by separating two images with a semi-transparent material such as glass, placed at an angle. When looking through the material, the two images appear to blend together. [elad] was able to build a box that attaches to the microscope with a projection of the oscilloscope image augmented on the view of the microscope.

This looks like it would be incredibly useful for PCBs, especially when dealing with small SMD components. The project is split across two entries, the second of which is here. In one demonstration the oscilloscope image is replaced with a visual of a computer monitor, so it could be used for a lot more applications than just the oscilloscope, too. There aren’t a lot of details on the project page though, but with an understanding of Pepper’s Ghost this should be easily repeatable. If you need more examples, there are plenty of other builds that use this technique.

Continue reading “Oscilloscope And Microscope Augmented With Ghosts”