DIY Pipe Inspector Goes Where No Bot Has Gone Before

If you think your job sucks, be grateful you’re not this homebrew sewer inspection robot.

Before anyone gets upset, yes we know what [Stargate System] built here isn’t a robot at all; it’s more of a remotely operated vehicle. That doesn’t take away from the fact that this is a very cool build, especially since it has to work in one of the least hospitable and most unpleasant environments possible. The backstory of this project is that the sewer on a 50-year-old house kept backing up, and efforts to clear it only temporarily solved the problem. The cast iron lateral line was reconfigured at some point in its history to include a 120-degree bend, which left a blind spot for the camera used by a sewer inspection service. What’s worse, the bend was close to a joint where a line that once allowed gutters and foundation drains access to the sewer.

To better visualize the problem, [Stargate] turned to his experience building bots to whip up something for the job. The bot had to be able to fit into the pipe and short enough to make the turn, plus it needed to be — erm, waterproof. It also needed to carry a camera and a light, and to be powered and controlled from the other end of the line. Most of the body of the bot, including the hull and the driving gear, was 3D printed from ABS, which allowed the seams to be sealed with acetone later. The drive tracks were only added after the original wheels didn’t perform well in testing. Controlling the gear motors and camera was up to a Raspberry Pi Zero, chosen mostly due to space constraints. An Ethernet shield provided connectivity to the surface over a Cat5 cable, and a homebrew PoE system provided power.

As interesting as the construction details were, the real treat is the down-hole footage. It’s not too graphic, but the blockage is pretty gnarly. We also greatly appreciated the field-expedient chain flail [Stargate] whipped up to bust up the big chunks of yuck and get the pipe back in shape. He did a little bit of robo-spelunking, too, as you do.

And no, this isn’t the only sewer bot we’ve ever featured.

Continue reading “DIY Pipe Inspector Goes Where No Bot Has Gone Before”

Would An Indexing Feature Benefit Your Next Hinge Design?

[Angus] of Maker’s Muse has a video with a roundup of different 3D-printable hinge designs, and he points out that a great thing about 3D printing objects is that adding printable features to them is essentially free.

These hinges have an indexing feature that allows them to lock into place, no additional parts needed.

A great example of this is his experimental print-in-place butt hinge with indexing feature, which is a hinge that can lock without adding any additional parts. The whole video is worth a watch, but he shows off the experimental design at the 7:47 mark. The hinge can swing normally but when positioned just right, the squared-off pin within slots into a tapered track, locking the part in place.

Inspired by a handheld shopping basket with a lockable handle, [Angus] worked out a design of his own and demonstrates it with a small GoPro tripod whose legs can fold and lock in place. He admits it’s a demonstration of the concept more than a genuinely useful tripod, but it does show what’s possible with some careful design. Being entirely 3D printed in a single piece and requiring no additional hardware is awfully nice.

3D printing is very well-suited to this sort of thing, and it’s worth playing to a printer’s strengths to do for pennies what one would otherwise need dollars to accomplish.

Want some tips on designing things in a way that take full advantage of what a 3D printer can achieve? Check out printing enclosures at an angle with minimal supports, leveraging the living hinge to print complex shapes flat (and fold them up for assembly), or even print a one-piece hinge that can actually withstand a serious load. All of those are full of tips, so keep them in mind the next time you design a part.

FLOSS Weekly Episode 811: Elixir & Nerves – Real Embedded Linux

This week, Jonathan Bennett and Lars Wikman chat about Elixir and Nerves — a modern language that’s a take on Erlang, and an embedded Linux approach for running Elixir code on devices.

Subscribe to catch the show live, and come to Hackaday for the rest of the story!

Continue reading “FLOSS Weekly Episode 811: Elixir & Nerves – Real Embedded Linux”

Mr Fusion powering a vehicle

Could Nuclear Be The Way To Produce Synthetic Fuel On The Cheap?

Fossil fuels can be a bit fussy to access, and geopolitics tends to make prices volatile. Burning them also takes carbon out of the ground and puts it into the atmosphere, with undesirable climate implications. The hunt for a solution has been on for quite some time.

Various synthetic fuels have been proposed as a solution, wherein carbon dioxide is captured from the air and chemically processed into useful fuel. Done properly, this could solve the climate issue where any fuel burned has its carbon later captured to make more fuel. The problem, though, is that this process is very energy intensive. Given the demands, it’s no surprise that some are looking towards nuclear reactors for the answer.

Continue reading “Could Nuclear Be The Way To Produce Synthetic Fuel On The Cheap?”

Retrotechtacular: The Deadly Shipmate

During World War II, shipboard life in the United States Navy was a gamble. No matter which theater of operations you found yourself in, the enemy was all around on land, sea, and air, ready to deliver a fatal blow and send your ship to the bottom. Fast forward a couple of decades and Navy life was just as hazardous but in a different way, as this Navy training film on the shipboard hazards of low-voltage electricity makes amply clear.

With the suitably scary title “115 Volts: A Deadly Shipmate,” the 1960 film details the many and various ways sailors could meet an untimely end, most of which seemed to circle back to attempts to make shipboard life a little more tolerable. The film centers not on the risks of a ship’s high-voltage installations, but rather the more familiar AC sockets used for appliances and lighting around most ships. The “familiarity breeds contempt” argument rings a touch hollow; given that most of these sailors appear to be in their 20s and 30s and rural electrification in the US was still only partially complete through the 1970s, chances are good that at least some of these sailors came from farms that still used kerosene lamps. But the point stands that plugging an unauthorized appliance into an outlet on a metal ship in a saltwater environment is a recipe for being the subject of a telegram back home.

The film shows just how dangerous mains voltage can be through a series of vignettes, many of which seem contrived but which were probably all too real to sailors in 1960. Many of the scenarios are service-specific, but a few bear keeping in mind around the house. Of particular note is drilling through a bulkhead and into a conduit; we’ve come perilously close to meeting the same end as the hapless Electrician’s Mate in the film doing much the same thing at home. As for up-cycling a discarded electric fan, all we can say is even brand new, that thing looks remarkably deadly.

The fact that they kept killing the same fellow over and over for each of these demonstrations doesn’t detract much from the central message: follow orders and you’ll probably stay alive. In an environment like that, it’s probably not bad advice.

Continue reading “Retrotechtacular: The Deadly Shipmate”

Boss Byproducts: Corium Is Man-Made Lava

So now we’ve talked about all kinds of byproducts, including man-made (Fordite), nature-made (fulgurites), and one that’s a little of both (calthemites). Each of these is beautiful in its own way, but I’m not sure about the beauty and merit of corium — that which is created in a nuclear reactor core during a meltdown.

A necklace made to look like corium.
A necklace made to look like corium. Image via OSS-OSS

Corium has the consistency of lava and is made up of many things, including nuclear fuel, the products of fission, control rods, any structural parts of the reactor that were affected, and products of those parts’ reaction with the surrounding air, water, and steam.

If the reactor vessel itself is breached, corium can include molten concrete from the floor underneath. That said, if corium is hot enough, it can melt any concrete it comes in contact with.

So, I had to ask, is there corium jewelry? Not quite. Corium is dangerous and hard to come by. But that doesn’t stop artisans from imitating the substance with other materials.

Continue reading “Boss Byproducts: Corium Is Man-Made Lava”

Life Found On Ryugu Asteroid Sample, But It Looks Very Familiar

Samples taken from the space-returned piece of asteroid Ryugu were collected and prepared under strict anti-contamination controls. Inside the cleanest of clean rooms, a tiny particle was collected from the returned sample with sterilized tools in a nitrogen atmosphere and stored in airtight containers before being embedded in an epoxy block for scanning electron microscopy.

It’s hard to imagine what more one could do, but despite all the precautions taken, the samples were rapidly colonized by terrestrial microorganisms. Only the upper few microns of the sample surface, but it happened. That’s what the images above show.

The surface of Ryugu from Rover 1B’s camera. Source: JAXA

Obtaining a sample from asteroid Ryugu was a triumph. Could this organic matter have come from the asteroid itself? In a word, no. Researchers have concluded the microorganisms are almost certainly terrestrial bacteria that contaminated the sample during collection, despite the precautions taken.

You can read the study to get all the details, but it seems that microorganisms — our world’s greatest colonizers — can circumvent contamination controls. No surprise, in a way. Every corner of our world is absolutely awash in microbial life. Opening samples on Earth comes with challenges.

As for off-Earth, robots may be doing the exploration but despite NASA assembling landers in clean room environments we may have already inadvertently exported terrestrial microbes to the Moon, and Mars. The search for life to which we are not related is one of science and humanity’s greatest quests, but it seems life found on a space-returned samples will end up looking awfully familiar until we step up our game.