Back To Where (For Most Of Us) It Started, The Intel 8080

The early history of microprocessors is a surprisingly complex one, with more than one claimant for the prize of being the first, and multiple competing families. That the first commercially available part was the Intel 4004 is a matter of record, but it’s fair to say that few of us will have ever encountered one. Even its 8-bit sibling the 8008 would not have featured heavily in a 1974 version of Hackaday, such was its exotic nature. If there’s a microprocessor that can be claimed to have started it all for us then, it’s the Intel 8080. It established the 8-bit microporcessor with an 8-bit bus and a 16-bit address space, it had an order of maginitude more performance than its predecessors, and crucially it would become affordable enough for experimenters. It provided the guts of the MITS Altair 8800 microcomputer, and thus kickstarted the progression of home computers which led to the devices you use every day.

The 8080 is in our sights today, thanks to [DeviceGuru], who was sent down memory lane by thoughts of the 6502-based KIM-1 from his master’s thesis project. This led to memories of the 8080 Abie computer that he built for himself in 1979, for which he provides us some details and hand-drawn schematics. By then the 8080’s need for several support chips made it somewhat outdated, but from his perspective the chip could be had from Radio Shack without too much outlay. His tale of hand-assembling 8080 code and sending it to a friend for blowing onto a PROM might be familiar to some readers of a certain age.

Though the 8080 ceased volume production a quarter century ago (surprisingly there are still places you can get a new one though) it hasn’t entirely disappeared from our community’s consciousness. [DeviceGuru] tells us about the 8080 Microprocessor kit from [Wichit Sirichote] in Thailand which is a single board computer in the 1970s vein, hex keypad and all.

As you might expect, the 8080 hasn’t appeared in many projects here due to its rarity. Those that have seem more likely to feature its Eastern Bloc clones, such as this Polish model or this Russian one. It’s worth the reminder that if you fancy exploring some 8080 code of your own that you don’t even need an 8080 to run it on some silicon. The hugely popular Zilog Z80 as found in retrocomputers such as the RC2014 is fully mostly 8080 code compatible, indeed some of us learned about microprocessors that way because 8080 books were discounted in 1983 and Z80 ones weren’t.

Header image: Konstantin Lanzet [CC BY-SA 3.0].

Surfing Diorama Makes For A Neat Desk Toy

In 1994, Weezer famously said that “you take your car to work, I’ll take my board”. Obviously, for the office-bound, surfing is simply out of the question during the working day.  That doesn’t mean you can’t have a little fun with a desk toy inspired by the waves.

The crux of the build is a watery diorama, which interacts with a faux-surfboard. The diorama consists of a tank constructed out of plexiglas, sealed together to be watertight. It’s then filled with blue-dyed water, and topped off with baby oil. The tank is then mounted on a cam controlled by a servo, which rocks the tank back and forth to create waves. This is controlled by the motion of the rider on the plywood surfboard, which can be rocked to and fro on the floor thanks to its curved bottom. An Arduino built into the board monitors a three-axis accelerometer, and sends this information to the Arduino controlling the tank.

By riding the board, the user can shake the tank. Get the motion just right, and smooth rolling waves are your reward. Jerk around with no real rhythm, and you’ll just get messy surf. We reckon it would be even better with a little surfer floating in the tank, too. It’s a fun build, and one that might help stave off the negative health effects of sitting at a desk all day. You might prefer a more shocking desk toy, however. Video after the break.

Continue reading “Surfing Diorama Makes For A Neat Desk Toy”

A Robotic Whiteboard Cleaner Keeps The Board Ready To Go

Wiping a whiteboard can be a tedious chore. Nobody wants to stick around after a long meeting to clean up, and sensitive information is often left broadcast out in the open. Never fear, though – this robot is here to help.

Wipy, as the little device is known, is a robotic cleaner that scoots around to keep whiteboards clear and ready for work. With brains courtesy of an Arduino Uno, it uses an IR line-following sensor to target areas to wipe, rather then wasting time wiping areas that are already clean. It’s also fitted with a time-of-flight sensor for ranging, allowing it to avoid obstacles, or busy humans that are writing on the board.

If Wipy lacks anything, it’s probably discretion. Despite its cute emoji-like face, it’s not really capable of tact, or knowing when it’s not needed. It’s recommended to keep Wipy powered down until you’re completely finished, lest it barge in and start wiping off important calculations before you’re done.

Fundamentally, it’s a fun build, and a great way to learn how to use a variety of sensors. If you’ve done something similar, be sure to let us know on the tips line. Else, consider automating the writing side of things, too. Tongue-in-cheek infomercial after the break.

Continue reading “A Robotic Whiteboard Cleaner Keeps The Board Ready To Go”

Tearing Down A $25K 8K Video Camera

Most people buy expensive cameras and use them rather than taking them apart, but Linus Tech Tips has a different approach. They decided that they would rather take the camera apart, with a view to converting it to water cooling. Why? Well, that’s perhaps like asking why climb Mount Everest: because it is there. The practicality (or desirability) of water-cooling an 8K camera aside, the teardown is rather interesting from an an engineering point of view. The RED HELIUM 8K costs about $25K, and most of us don’t often get a look inside equipment like this.

Continue reading “Tearing Down A $25K 8K Video Camera”

Gigapixel Microscope Reveals Tiny Parts Of The Big Picture

[JBumstead] didn’t want an ordinary microscope. He wanted one that would show the big picture, and not just in a euphemistic sense, either. The problem though is one of resolution. The higher the resolution in an image — typically — the narrower the field of view given the same optics, which makes sense, right? The more you zoom in, the less area you can see. His solution was to create a microscope using a conventional camera and building a motion stage that would capture multiple high-resolution photographs. Then the multiple photos are stitched together into a single image. This allows his microscope to take a picture of a 90x60mm area with a resolution of about 15 μm. In theory, the resolution might be as good as 2 μm, but it is hard to measure the resolution accurately at that scale.

As an Arduino project, this isn’t that difficult. It’s akin to a plotter or an XY table for a 3D printer — just some stepper motors and linear motion hardware. However, the base needs to be very stable. We learned a lot about the optics side, though.

Continue reading “Gigapixel Microscope Reveals Tiny Parts Of The Big Picture”

Bringing Pneumatics To The Masses With Open Source Soft Robotics

Soft robotics is an exciting field. Mastering the pneumatic control of pliable materials has enormous potential, from the handling of delicate objects to creating movement with no moving parts. However, pneumatics has long been overlooked by the hacker community as a mode of actuation. There are thousands of tutorials, tools and products that help us work with motor control and gears, but precious few for those of us who want to experiment with movement using air pressure, valves and pistons.

Physicist and engineer [tinkrmind] wants to change that. He has been developing an open source soft robotics tool called Programmable Air for the past year with the aim of creating an accessible way for the hacker community to work with pneumatic robotics. We first came across [tinkrmind]’s soft robotics modules at World Maker Faire in New York City in 2018 but fifty beta testers and a wide range of interesting projects later — from a beating silicone heart to an inflatable bra — they are now being made available on Crowd Supply.

We had the chance to play with some of the Programmable Air modules after this year’s Makerfaire Bay Area at Bring A Hack. We can’t wait to see what squishy, organic creations they will be used for now that they’re out in the wild.

If you need more soft robotics inspiration, take a look at this robotic skin that turns teddy bears into robots from Yale or these soft rotating actuators from Harvard.

See a video of the Programmable Air modules in action below the cut. Continue reading “Bringing Pneumatics To The Masses With Open Source Soft Robotics”

Stylish Alarm Clock Rocks A VFD

There are a great many display technologies available if you wish to make a digital clock. Many hackers seem to have a penchant for the glowier fare from the Eastern side of the Berlin Wall. [ChristineNZ] is one such hacker, and managed to secure some proper Soviet kit for an alarm clock build.

The clock employs an IV-27M vacuum fluorescent display, manufactured in the now-defunct USSR. Featuring 13 seven-segment digits, it’s got that charming blue glow that you just don’t get with other technologies. A MAX6921AWI chip is used to drive the VFD, and an Arduino Mega is the brains of the operation. There’s also an HD44780-compliant LCD that can display further alphanumeric information, and a 4×4 keypad for controlling the device.

The best part of the build though is the enclosure. The VFD is encased in a glass tube, and supported at either end by 90-degree copper pipe couplers. These hold the VFD aloft, and also act as a conduit for the wires coming off each end of the tube. It’s all built on top of a wooden base that holds the rest of the electronics.

It’s an attractive build, and we love the floating look created by the glass tube construction. It’s not the first time we’ve seen old Russian VFDs, and we doubt it will be the last. Video after the break.

Continue reading “Stylish Alarm Clock Rocks A VFD”