X1Plus: Open Source Bambu Lab X1 Firmware

Recently [Michael] over at the [Teaching Tech] YouTube channel got access to the X1Plus firmware, and takes us through what it may mean for Bambu Lab X1 owners. X1Plus is alternative firmware for the Bambu Lab X1 FDM 3D printer that was developed by X1 owners who felt that there were some features that they were missing, such as a detailed report on automatic bed leveling, input shaping calibration response graphs and more.

Perhaps most interesting is that this firmware does not replace the Bambu Lab firmware, but rather runs completely from a microSD card that’s inserted into the display’s SD card reader. This means that only the bootloader of the printer’s boot medium is changed, and the printer thus retains the ability boot to the OEM firmware as needed. Whether you want to try it on your own X1 depends on a few factors, first of all being that it only works with the OEM firmware up to and including version 1.7.0.

Since the bootloader modification relies on an exploit that was patched in newer firmware, a lot depends on whether Bambu Lab allows such tinkering, much like Prusa does with the Mini printer, or allows flashing of older firmware which would enable the exploit on newer X1 printers. Depending on Bambu Lab’s response, the imminent public release of this open source firmware may as a result run into some pretty big hurdles.

Continue reading “X1Plus: Open Source Bambu Lab X1 Firmware”

Vulcan Nails First Flight, But Peregrine Falls Short

For those with an interest in the history of spaceflight, January 8th promised to be a pretty exciting day. Those who tuned into the early morning live stream were looking forward to seeing the first flight of the Vulcan Centaur, a completely new heavy-lift booster developed by United Launch Alliance. But as noteworthy as the inaugural mission of a rocket might be under normal circumstances, this one was particularly special as it was carrying Peregrine — set to be the first American spacecraft to set down on the lunar surface since the end of the Apollo program in 1972.

Experience has taught us that spaceflight is hard, and first attempts at it doubly so. The likelihood of both vehicles performing as expected and accomplishing all of their mission goals was fairly remote to begin with, but you’ve got to start somewhere. Even in the event of a complete failure, valuable data is collected and real-world experience is gained.

Now, more than 24 hours later, we’re starting to get that data back and finding out what did and didn’t work. There’s been some disappointment for sure, but when everything is said and done, the needle definitely moved in the right direction.

Continue reading “Vulcan Nails First Flight, But Peregrine Falls Short”

A Compact SMD Reflow Hotplate Powered By USB-PD

When it comes to home-lab reflow work, there are a lot of ways to get the job done. The easiest thing to do perhaps is to slap a PID controller on an old toaster oven and call it a day. But if your bench space is limited, you might want to put this compact reflow hotplate to work for you.

There are a lot of nice features in [Toby Chui]’s build, not least of which is the heating element. Many DIY reflow hotplates use a PCB heater, where long, thin traces in the board are used as resistive heating elements. This seems like a great idea, but as [Toby] explains in the project video below, even high-temperature FR4 substrate isn’t rated for the kinds of temperatures needed for some reflow profiles. His search for alternatives led him to metal ceramic heaters (MCH), which are commonly found in medical and laboratory applications. The MCH he chose was rated for 20 VDC at 50 watts — perfect for powering with USB-PD.

The heater sits above the main PCB on a Kapton-wrapped MDF frame with a thermistor to close the loop. While it’s not the biggest work surface we’ve seen, it’s a good size for small projects. The microcontroller is a CH552, which we’ve talked about before; aside from that and the IP2721 PD trigger chip needed to get the full 60 watts out of the USB-PD supply, there’s not much else on the main board.

This looks like a nice design, and [Toby] has made all the design files available if you’d like to give it a crack. Of course, you might want to freshen up on USB-PD before diving in, in which case we recommend [Arya]’s USB-PD primer.

Continue reading “A Compact SMD Reflow Hotplate Powered By USB-PD”

A Very 21st Century Receiver For A Very 20th Century Band

The FM broadcast band has been with us since the middle of the 20th century, and despite many tries to unseat it, remains a decent quality way to pick up your local stations. It used to be that building an FM broadcast receiver required a bit of RF know-how, but the arrival of all-in-one receiver chips has made that part a simple enough case of including a part. That’s not to say that building a good quality FM broadcast receiver in 2024 doesn’t involve some kind of challenge though, and it’s one that [Stefan Wagner] has risen to admirably with his little unit.

Doing the RF part is an RDA5807MP single chip radio, but we’d say the center of this is the CH32V003 RISC-V microcontroller and its software. Twiddling the dial is a thing of the past, with a color display and all the computerized features you’d expect. Rounding it off in the 3D printed case is a small speaker and a Li-Po pouch cell with associated circuitry. This really is the equal of any commercially produced portable radio, and better than many.

Even with the all-in-one chips, there’s still fun in experimenting with FM the old way.

37C3: The Tech Behind Life With Quadraplegia

While out swimming in the ocean on vacation, a big wave caught [QuadWorker], pushed him head first into the sand, and left him paralyzed from the neck down. This talk isn’t about injury or recovery, though. It’s about the day-to-day tech that makes him able to continue living, working, and travelling, although in new ways. And it’s a fantastic first-hand insight into how assistive technology works for him.

If you can only move your head, how do you control a computer? Surprisingly well! A white dot on [QuadWorker]’s forehead is tracked by a commodity webcam and some software, while two button bumpers to the left and right of his head let him click with a second gesture. For cell phones, a time-dependent scanner app allows him to zero in successively on the X and Y coordinates of where he’d like to press. And naturally voice recognition software is a lifesaver. In the talk, he live-demos sending a coworker a text message, and it’s almost as fast as I could go. Shared whiteboards allow him to work from home most of the time, and a power wheelchair and adapted car let him get into the office as well.

The lack of day-to-day independence is the hardest for him, and he says that they things he misses most are being able to go to the bathroom, and also to scratch himself when he gets itchy – and these are yet unsolved problems. But other custom home hardware also plays an important part in [QuadWorker]’s setup. For instance, all manner of home automation allows him to control the lights, the heat, and the music in his home. Voice-activated light switches are fantastic when you can’t use your arms.

This is a must-watch talk if you’re interested in assistive tech, because it comes direct from the horse’s mouth – a person who has tried a lot, and knows not only what works and what doesn’t, but also what’s valuable. It’s no surprise that the people whose lives most benefit from assistive tech would also be most interested in it, and have their hacker spirit awakened. We’re reminded a bit of the Eyedrivomatic, which won the 2015 Hackaday Prize and was one of the most outstanding projects both from and for the quadriplegic community.

Continue reading “37C3: The Tech Behind Life With Quadraplegia”

How To Refrigerate With Urine

It’s often said that the best science experiments are the ones which do not require any special devices or ingredients, which makes the use of what naturally comes out of one’s body clearly one of the winners. It’s also the beginning of yet another [Hyperspace Pirate] chemistry video that’s both fascinating and unforgettable — this time introducing a considerable collection of urine, and the many uses of the urea in it, including its use for refrigeration.

The respective cooling effect of a variety of compounds in solution. (Credit: Hyperspace Pirate)
The respective cooling effect of a variety of compounds in solution. (Credit: Hyperspace Pirate)

As icky as this may sound, it doesn’t even rank in the top ten of quaint things people have historically done with urine, so extracting urea from it is rather benign. This is performed by adding sodium hydroxide to the starting component after heating, which creates gaseous ammonia (NH3) which was then condensed into its liquid (dissolved) form. In order to create the target compound – being ammonium nitrate – nitric acid (HNO3) had to be created first.

For this the older, but cheaper and easier Birkeland-Eyde process was used. This uses high-voltage electrical arcs to break down the nitrogen and oxygen in the air and cause the formation of nitric oxide (NO), that subsequently reacts with atmospheric oxygen to form nitrogen dioxide (NO2). Running the NO2 through water then creates the desired HNO3, which can be combined with the ammonia solution to create ammonium nitrate. The resulting solution was then evaporated into solid ammonium nitrate, to use it in an aluminium cooling cylinder, with freshly added water.

This is the simplest way to use the cooling effect of such solutions (pictured), but the benefit of ammonium nitrate over the original urea seems minimal. The low efficiency of this cooling approach means that the next use of urine will involve a much more efficient vapor-absorption cycle, which we’re sure everyone is squeezing their legs together for in anticipation.

We’ve been covering the refrigeration experiments [Hyperspace Pirate] has been conducting for some time now. If you’re into the science of making things cold check out how seashells can be turned into dry ice, or what goes into building a home cryocooler.

Continue reading “How To Refrigerate With Urine”

Another Tesla Coil Starts

Everyone interested in electronics should build at least one Tesla coil. But be careful. Sure, the high voltage can be dangerous, but the urge to build lots of coils is even worse. [Learnelectronics] shows how to build a slayer exciter using a 3D-printed core, and lots of wire of course. You can see the coil, an explanation of the design, and a comparison to a cheap kit in the video below.

Of course, you hear about Tesla coils, but it is really more of a Tesla transformer. The 3D-printed core holds the many turns of the secondary coil. The larger Tesla coil, amusingly, upset the camera which made it hard to get close-up shots.

Continue reading “Another Tesla Coil Starts”