Building A Giant Remote Controlled Model Airbus A380 In A Year

A year ago [Ramy RC] set out on a momentous challenge: to build a 1:21 scale Airbus A380-800 RC model with functional engines, landing gear and all other details. Recently he finished the project and published a video with a summary of the whole build process (also linked below). The full video series can be found on the Ramy RC channel. The final RC airplane came out at a massive wingspan of 3.9 meters (12.7′), a length of 3.6 meters (11.8′) and a weight of 25 kg. This weight is carried by the full landing gear of multiple bogeys that can retract much like on the real airplane.

A range of materials were used for the body, including carbon fiber and wood, with each part carefully modeled with CAD software and 3D-printed or cut on a CNC cutter. Four ducted fans provide the propulsive power that lift this enormous model airplane into the skies, which is the only part where the noise profile doesn’t quite match that of the real A380. Even so, seeing the airplane taxing, taking off and flying through the skies makes you look twice to realize that it is in fact a scale model and not a real Emirates A380-800, also courtesy of the excruciating amount of detail to the model’s final look, down from the logos to the silver-grey lines.

We’re also quite convinced that the maiden flight of such an exquisite model has to be one of the most terrifying experiences imaginable.

Continue reading “Building A Giant Remote Controlled Model Airbus A380 In A Year”

Zen And Glowing Air Bubble Displays

When you work in a medium for long enough, and you learn how it works more and more deeply, you eventually become its master. [Yukio Shinoda] is probably master of the LED bubble display.

She started out with an idea, back in 1994, of a column of water and an array of solenoids to inject air, making patterns in the bubbles. Time passed, and she began to realize these works, first in water and then switching over to glycerine for slower, more predictable, and more spherical bubbles. The latest version realizes her initial vision, after 29 years, with an 8×8 array of nozzles making 3D shapes in the slowly rising columns. Continue reading “Zen And Glowing Air Bubble Displays”

HP 33120A Repair: Shutting Down The Eye Of Sauron

When a friend of [Tom Verbeure] came into possession of two HP 33120A 15 MHz function/arbitrary waveform generators, he could not resist giving them a try. Although not exactly high-end units, the HP 33120A makes for a pretty nice unit for a home lab. During the first test run, however, [Tom] discovered that one of the units had a dead output, which made it rather useless. Undeterred, [Tom] set to work diagnosing it, helped by the repair manual and full schematics.

While the cause was quickly tracked down to the general area around an exploded MLCC, fixing the fried Zener diode that may have initiated the short on the -15V rail revealed an unpleasant surprise. To [Tom]’s horror, he saw a portal to Hell itself open when part of the PCB caught on fire due to an internal short. After making sure to capture a video of this event, he then proceeded to use a thermal camera to track down the hot spot and uses a drill to remove the short.

While one can argue with the use of a drill to remove shorts on inner layers of a PCB, ultimately the fix was effective. A look on the schematic and comparison with the functioning 33120A unit later, all it took was two bodge wires to restore functionality. After this event, [Tom]’s friend gave him the repaired unit as thanks, and definitely not because [Tom] had begun to refer to it as ‘his precious’.

A simple wooden chair with mint metallic connectors at the corners sits next to a pile of wooden pieces wrapped in leather and straps to form a backpack.

A Nomadic Chair

There’s no shortage of different types of folding or portable chairs, but designer [Jorge Penadés] built a backpack chair that will go the long haul.

Furniture that assembles without screws or glue is always intriguing, and this chair fits the bill. Using simple metal connectors and joinery, it can be setup and taken down in about two minutes without the flimsy feeling of a bag chair. With a natural finish on the wood, the connectors give a nice pop of color without feeling overwhelming. There are even some pictures of a couch version if you follow the link.

In backpack mode, the pieces are held together by leather patches and ratchet straps. [Penadés] was focused on portability over comfort with this piece, but we think this connection method could be used in the future for more comfortable furniture that is still portable.

If you’re looking for more interesting furniture, checkout this Tambour Table with a Puzzling Secret or these CNC-able Seats.

Continue reading “A Nomadic Chair”

Your Next Airport Meal May Be Delivered By Robot

Robot delivery has long been touted as a game-changing technology of the future. However, it still hasn’t cracked the big time. Drones still aren’t airdropping packages into our gutters by accident, nor are our pizzas brought to us via self-driving cars.

That’s not to say that able minds aren’t working on the problem. In one case, a group of engineers are working ton a robot that will handle the crucial duty of delivering food to hungry flyers at the airport.

Continue reading “Your Next Airport Meal May Be Delivered By Robot”

Push ESP32 Over The Air Updates From GitHub

Let’s say you’re working on an ESP32 project to send off to your grandma; something she can just plug in and it will start automatically monitoring her plant’s water levels. But you discover a critical flaw in the firmware and need to update it. Does she send it back? Do you walk her through dropping the update via the Arduino IDE OTA? The easiest way would be to plan and use something like esp_ghota, an OTA framework by [Justin Hammond].

OTA (Over-The-Air) updates are a fantastic feature of the ESP32, and we’ve covered libraries that make it easy. But compared to those earlier projects, esp_ghota takes a different approach. Rather than hosting a web server where someone can drop a binary, it looks at GitHub releases. [Justin] had to include a streaming JSON parser, as GitHub API responses tend to be beefy. The workflow is straightforward, push a new commit to your main branch on GitHub, and the action will trigger, building a few different versions. Your little plant watering reminder at your grandma’s will check every so often to see if a new version has been pushed and can update with rollback on littlefs, fatfs, and spiffs filesystems.

It’s an incredible project that we suspect will be very useful for many folks to update their projects. [Justin] even includes an example GitHub action and a sample ESP32 project.

Printed Propeller Blades Repair Indoor Flyer

Fair warning for readers with a weak stomach, the video below graphically depicts an innocent rubber band airplane being obliterated in mid-air by a smug high-tech RC helicopter. It’s a shocking display of airborne class warfare, but the story does have a happy ending, as [Concrete Dog] was able to repair his old school flyer with some very modern technology: a set of 3D printed propeller blades.

Now under normal circumstances, 3D printed propellers are a dicey prospect. To avoid being torn apart by the incredible rotational forces they will be subjected to, they generally need to be bulked up to the point that they become too heavy, and performance suffers. The stepped outer surface of the printed blade doesn’t help, either.

But in a lightweight aircraft powered by a rubber band, obviously things are a bit more relaxed. The thin blades [Concrete Dog] produced on his Prusa Mini appear to be just a layer or two thick, and were printed flat on the bed. He then attached them to the side of a jar using Kapton tape, and put them in the oven to anneal for about 10 minutes. This not only strengthened the printed blades, but put a permanent curve into them.

The results demonstrated at the end of the video are quite impressive. [Concrete Dog] says the new blades actually outperform the originals aluminum blades, so he’s has to trim the plane out again for the increased thrust. Hopefully the extra performance will help his spindly bird avoid future aerial altercations.

On the electrically powered side of things, folks have been trying to 3D print airplane and quadcopter propellers for almost as long as desktop 3D printers have been on the market. With modern materials and high-resolution printers the idea is more practical than ever, though it’s noted they don’t suffer crashes very well.

Continue reading “Printed Propeller Blades Repair Indoor Flyer”