Replica Proton Pack Is A Great Halloween Build

Way back in 1984, the Ghostbusters defended New York City from an onslaught of supernatural phenomena. In their honor, [BALES] created this costume for Halloween, replete with an amazing replica proton pack.

(We know, this is a little late for Halloween 2019, but just think about how early you’re going to be for Halloween 2020!)

While not actually capable of trapping and harnessing entities from the spirit realm, the replica pack nonetheless is impressive. Constructed primarily from EVA foam and PVC pipe, it’s built on a custom built Alice pack frame to make it easy to carry. The cyclotron scores some LEDs, and EL wire completes the neutrino wand. A rough-and-ready paintjob make the gear look well used, and the laser-printed labels go a long way to completing the look.

[BALES] didn’t skimp on the clothing side either. The olive drab overalls, an embroidered patch, and belt were sourced from Amazon, and a custom name badge was produced to complete the ensemble. We’re sure the costume was an absolute hit at Halloween, and gives us plenty ideas of our own. It would pair well with this PKE meter that actually detects radiation, too!

Inject Keystrokes Any Way You Like With This Bluetooth Keystroke Injector

[Amirreza Nasiri] sends in this cool USB keystroke injector.

The device consists of an Arduino, a Bluetooth module, and an SD card. When it’s plugged into the target computer the device loads the selected payload from the SD card, compromising the system. Then it does its unique trick which is to switch the injector over to Bluetooth mode. Now the attacker has much more control, albeit local, over the system.

While we would never even be tempted to plug this device into a real computer, we like some of the additional features, like how an added dip switch can be used to select from up to eight different payloads depending on the required attack. The addition of a photo diode is also interesting, and makes us dream of all sorts of impractical movie hacker scenarios. [Amirreza] says it’s to trigger when the person leaves the room and turns the lights off.

[Amirreza] has all the code and design files on the GitHub. There are also a few payload examples, which should be fun to hack on. After all, one of life’s pleasures is to find new ways to mess with your friends.

Incredibly Tiny RF Antennas For Practical Nanotech Radios

Researchers may have created the smallest-ever radio-frequency antennas, a development that should be of interest to any nanotechnology enthusiasts. A group of scientists from Korea published a paper in ACS Nano that details the fabrication of a two-dimensional radio-frequency antenna for wearable applications. Most antennas made from metallic materials like aluminum, cooper, or steel which are too thick to use for nanotechnology applications, even in the wearables space. The newly created antenna instead uses metallic niobium diselenide (NbSe2) to create a monopole patch RF antenna. Even with its sub-micrometer thickness (less than 1/100 the width of a strand of human hair), it functions effectively.

The metallic niobium atoms are sandwiched between two layers of selenium atoms to create the incredibly thin 2D composition. This was accomplished by spray-coating layers of the NbSe2 nanosheets onto a plastic substrate. A 10 mm x 10 mm patch of the material was able to perform with a 70.6% radiation efficiency, propagating RF signals in all directions. Changing the length of the antenna allowed its frequency to be tuned from 2.01-2.80 GHz, which includes the range required for Bluetooth and WiFi connectivity.

Within the ever-shrinking realm of sensors for wearable technologies, there is sure to be a place for tiny antennas as well.

[Thanks Qes for the tip!]

Azobenzene Stores Solar Energy

Probably the most efficient way to convert solar energy into electricity is the old fashioned way, heating water into steam and turning a turbine. This remains a messy affair though and you don’t really want a steam boiler on your roof, so solar cells are popular. However, there’s some new research showing how a molecule can absorb solar energy, store it, and then release the heat on demand years later. This could offer new ways to collect and even transport solar power. This new molecule, derived from azobenzene, holds immense promise to change the way we work with solar power.

Continue reading “Azobenzene Stores Solar Energy”

HF Propagation And Earthquakes

For all the successes of modern weather forecasting, where hurricanes, blizzards, and even notoriously unpredictable tornadoes are routinely detected before they strike, reliably predicting one aspect of nature’s fury has eluded us: earthquakes. The development of plate tectonic theory in the middle of the 20th century and the construction of a worldwide network of seismic sensors gave geologists the tools to understand how earthquakes happened, and even provided the tantalizing possibility of an accurate predictor of a coming quake. Such efforts had only limited success, though, and enough false alarms that most efforts to predict earthquakes were abandoned by the late 1990s or so.

It may turn out that scientists were looking in the wrong place for a reliable predictor of coming earthquakes. Some geologists and geophysicists have become convinced that instead of watching the twitches and spasms of the earth, the state of the skies above might be more fruitful. And they’re using the propagation of radio waves from both space and the ground to prove their point that the ionosphere does some interesting things before and after an earthquake strikes.

Continue reading “HF Propagation And Earthquakes”

The Blessings And Destruction Wrought By Lead Over Millennia

Everyone one of us is likely aware of what lead — as in the metal — is. Having a somewhat dull, metallic gray appearance, it occupies atomic number 82 in the periodic table and is among the most dense materials known to humankind. Lead’s low melting point and malleability even when at room temperature has made it a popular metal since humans first began to melt it out of ore in the Near East at around 7,000 BC in the Neolithic period.

Although lead’s toxicity to humans has been known since at least the 2nd century BC and was acknowledged as a public health hazard in the late 19th century, the use of lead skyrocketed in the first half of the 20th century. Lead saw use as a gasoline additive beginning in the 1920s, and the US didn’t abolish lead-based paint until 1978, nearly 70 years after France, Belgium and Austria banned it.

With the rise of consumer electronics, the use of lead-based solder became ever more a part of daily life during the second part of the 20th century, until an increase in regulations aimed at reducing lead in the environment. This came along with the World Health Organization’s fairly recent acknowledgment that there is truly no safe limit for lead in the human body.

In this article I’ll examine the question of why we are still using lead, and if we truly must, then how we can use this metal in the safest way possible.

Continue reading “The Blessings And Destruction Wrought By Lead Over Millennia”

Celebrate Ada Lovelace Day By Catching Up On Stories Of Science And Technology

Today is Ada Lovelace Day, a day to celebrate and encourage women in the fields of science and technology.

It’s a perfect time to look back and catch up on biographies of some incredible people whose stories have been featured over the past year. You’ll find a ton of those below, but while we have your attention we wanted to make an appeal to help shine some light onto those stories we have yet to feature in our Profiles in Science series. Let us know about women whose stories you’d like to see on Hackaday in the coming year by leaving a comment below. Of course, it’s not just today, we’re always looking for suggestions and the tips line is always open.

Getting a rocket engine off of the launch pad is itself a tricky proposition, but reaching an orbital velocity is an entirely different story. During the space race, the US was on the lookout for a fuel that could do the trick, and the answers came from a chemist who grew up in a small town in North Dakota then started a college degree before for a job at Plumb Brook Ordnance Works. Mary Sherman Morgan came through with the formulation for Hydyne that powered the Redstone Rocket project.

Continue reading “Celebrate Ada Lovelace Day By Catching Up On Stories Of Science And Technology”