A bunch of unpopulated PCB business cards with rad dead rat artwork.

2024 Business Card Challenge: A Very Annoying Business Card, Indeed

Usually the business card itself is the reminder to get in contact with whoever gave it to you. But this is Hackaday, after all. This solar-powered card reminds the recipient to send [Dead Rat Productions] an email by beeping about every two hours, although the gist of that email may simply be begging them to make it stop, provided they didn’t just toss the thing in the garbage.

The full-on, working version of the card is not intended for everyone — mostly serious-looking A-list types that ooze wealth. Most of [Dead Rat Productions]’ pub mates will get an unpopulated version, which could be a fun afternoon for the right kind of recipient, of course.

That person would need a Seeed Studio Xiao SAMD21, a solar panel, plus some other components, like an energy-harvesting chip to keep the battery topped up. Of note, there is a coin cell holder that requires prying with a screwdriver to get the battery out, so there’s really no escaping the beeping without some work on their part. We rather like the artwork on this one, especially the fact that the coin cell sits inside the rat’s stomach. That’s a nice touch.

Hack All The Things, Get All The Schematics

When I was growing up, about 4 or 5 years old, I had an unorthodox favourite type of reading material: service manuals for my dad’s audio equipment. This got to the point that I kept asking my parents for more service manuals, and it became a running joke in our family for a bit. Since then, I’ve spent time repairing tech and laptops in particular as a way of earning money, hanging out at a flea market in the tech section, then spending tons of time at our hackerspace. Nowadays, I’m active in online hacker groups, and I have built series of projects closely interlinked with modern-day consumer-facing tech.

Twenty three years later, is it a wonder I have a soft spot in my heart for schematics? You might not realize this if you’re only upcoming in the hardware hacking scene, but device schematics, whichever way you get them, are a goldmine of information you can use to supercharge your projects, whether you’re hacking on the schematic-ed device itself or not. What’s funny is, not every company wants their schematics to be published, but it’s ultimately helpful for the company in question, anyway.

If you think it’s just about repair – it’s that, sure, but there’s also a number of other things you might’ve never imagined you can do. Still, repair is the most popular one.
Continue reading “Hack All The Things, Get All The Schematics”

[Usagi Electric’s] Bendix G15 Gets DC Power

[Usagi Electric] is breathtakingly close to having his Bendix G15 vacuum tube computer up and running. This week he is joined by a new friend, [Lloyd] who is restoring a G15 as well. [Lloyd] used to repair the Bendix Computers back in the 1970s, so he’s privy to lots of practical knowledge you can’t find in the manuals.

The goal this week was to apply DC power to the G15.  The AC power spins the fans and makes the tubes start glowing. But DC makes the magic happen.  That’s when the boot sequencers start running, sending data to the drum, testing various parts of the machine, and finally, loading software from the paper tape reader.

Since this was a computer from the 1950’s, powering up DC might work, or could let the magic smoke out.  The only way to find out was to push the big green “Reset” button.

The first attempt was stymied by a blown fuse. The second attempt resulted in real live blinkenlights. The data and status lights on the Bendix lit up for the first time in decades. The only thing missing was the sound of the tape drive.  A bit of digging proved that the problem wasn’t in the computer, but in the typewriter user console. The typewriter is supposed to connect the SA line to the -20 volt DC rail. That wasn’t happening though. Since that expected voltage wasn’t present on the SA line at the Bendinx, the boot process halted.

Unfortunately, the typewriter has “somebody’s been here before” syndrome – in addition to age, there are a number of odd modifications.  It’s going to take [Usagi] a bit of time to dig into it and figure out what’s wrong.

The good news is that the computer is using its massive spinning drum drive. [Usagi] was able to verify this with the test panel inside the machine. One button will write a pulse to the drum, and another will erase it. Manipulating these buttons, [Usagi] could see the results on an oscilloscope.  This may sound simple – but just getting to this point means an incredibly complex chain of tube, relay, and mechanical logic has to work.  Bravo [Dave] and [Lloyd]!

Continue reading “[Usagi Electric’s] Bendix G15 Gets DC Power”

The Flash Memory Lifespan Question: Why QLC May Be NAND Flash’s Swan Song

The late 1990s saw the widespread introduction of solid-state storage based around NAND Flash. Ranging from memory cards for portable devices to storage for desktops and laptops, the data storage future was prophesied to rid us of the shackles of magnetic storage that had held us down until then. As solid-state drives (SSDs) took off in the consumer market, there were those who confidently knew that before long everyone would be using SSDs and hard-disk drives (HDDs) would be relegated to the dust bin of history as the price per gigabyte and general performance of SSDs would just be too competitive.

Fast-forward a number of years, and we are now in a timeline where people are modifying SSDs to have less storage space, just so that their performance and lifespan are less terrible. The reason for this is that by now NAND Flash has hit a number of limits that prevent it from further scaling density-wise, mostly in terms of its feature size. Workarounds include stacking more layers on top of each other (3D NAND) and increasing the number of voltage levels – and thus bits – within an individual cell. Although this has boosted the storage capacity, the transition from single-level cell (SLC) to multi-level (MLC) and today’s TLC and QLC NAND Flash have come at severe penalties, mostly in the form of limited write cycles and much reduced transfer speeds.

So how did we get here, and is there life beyond QLC NAND Flash?

Continue reading “The Flash Memory Lifespan Question: Why QLC May Be NAND Flash’s Swan Song”

Unlocking The Mystery Of An Aircraft ADI

If you’ve ever seen the cockpit of an airplane, you’ve probably noticed the round ball that shows your attitude, and if you are like us, you’ve wondered exactly how the Attitude Direction Indicator (ADI) works. Well, [msylvain59] is tearing one apart in the video below, so you can satisfy your curiosity in less than 30 minutes.

Like most things on an airplane, it is built solidly and compactly. With the lid open, it reminded us of a tiny CRT oscilloscope, except the CRT is really the ball display. It also has gears, which is something we don’t expect to see in a scope.

Continue reading “Unlocking The Mystery Of An Aircraft ADI”

Plight Of The Lowly Numitron Tube

In the 60’s and 70’s there were many ways to display numeric data. Nixie tubes, Vacuum Florescent Displays (VFD), micro projection systems, you name it. All of them had advantages and drawbacks. One of the simplest ways to display data was the RCA Numitron. [Alec] at Technology Connections has a bit of a love/hate relationship with these displays.

The Numitron is simply a seven-segment display built from light bulb filaments. The filaments run at 5 V, and by their nature are current limited.  Seven elements versus the usual ten seen in Nixie tubes reduced the number of switching elements (transistors, relays, or tubes) needed to drive them, and the single low-voltage supply was also much simpler than Nixie or even VFD systems.

Sounds perfect, right? Well, [Alec] has a bone to pick with this technology. The displays were quite dim, poorly assembled, and not very pleasing to look at. RCA didn’t bother tilting the “8” to fit the decimal point in! Even the display background was gray, causing the numbers to wash out in ambient light. Black would have been much better. In [Alec]’s words, the best way to describe the display would be “Janky,” yet he still enjoys them. In fact, he built a fancy retro-industrial-themed clock with them.

The Numitron was not a failure, though — we know variants of this display ended up in everything from gas pumps to aircraft cockpit gauges. You can even build an LED-based replica clock — no glowing filaments necessary.

Continue reading “Plight Of The Lowly Numitron Tube”

PeLEDs: Using Perovskites To Create LEDs Which Also Sense Light

With both of the dominant display technologies today – LCD and OLED – being far from perfect, there is still plenty of room in the market for the Next Big Thing. One of the technologies being worked on is called PeLED, for Perovskite LED. As a semiconductor material, it can both be induced to emit photons as well as respond rather strongly to incoming photons. That is a trick that today’s displays haven’t managed without integrating additional sensors. This technology could be used to create e.g. touch screens without additional hardware, as recently demonstrated by [Chunxiong Bao] and colleagues at Linköping University in Sweden and Nanjing University in China.

Their paper in Nature Electronics describes the construction of photo-responsive metal halide perovskite pixels, covering the typical red (CsPbI3−xBrx), green (FAPbBr3), and blue (CsPbBr3−xClx) wavelengths. The article also describes the display’s photo-sensing ability to determine where a finger is placed on the display. In addition, it can work as an ambient light sensor, a scanner, and a solar cell to charge a capacitor. In related research by [Yun Gao] et al. in Nature Electronics, PeLEDs are demonstrated with 1 microsecond response time.

As usual with perovskites, their lack of stability remains their primary obstacle. In the article by [Chunxiong Bao] et al. the manufactured device with red pixels was reduced to 80% of initial brightness after 18.5 hours. While protecting the perovskites from oxygen, moisture, etc. helps, this inherent instability may prevent PeLEDs from ever becoming commercialized in display technology. Sounds like a great challenge for the next Hackaday Prize!