Unlocking The Mystery Of An Aircraft ADI

If you’ve ever seen the cockpit of an airplane, you’ve probably noticed the round ball that shows your attitude, and if you are like us, you’ve wondered exactly how the Attitude Direction Indicator (ADI) works. Well, [msylvain59] is tearing one apart in the video below, so you can satisfy your curiosity in less than 30 minutes.

Like most things on an airplane, it is built solidly and compactly. With the lid open, it reminded us of a tiny CRT oscilloscope, except the CRT is really the ball display. It also has gears, which is something we don’t expect to see in a scope.

Continue reading “Unlocking The Mystery Of An Aircraft ADI”

Plight Of The Lowly Numitron Tube

In the 60’s and 70’s there were many ways to display numeric data. Nixie tubes, Vacuum Florescent Displays (VFD), micro projection systems, you name it. All of them had advantages and drawbacks. One of the simplest ways to display data was the RCA Numitron. [Alec] at Technology Connections has a bit of a love/hate relationship with these displays.

The Numitron is simply a seven-segment display built from light bulb filaments. The filaments run at 5 V, and by their nature are current limited.  Seven elements versus the usual ten seen in Nixie tubes reduced the number of switching elements (transistors, relays, or tubes) needed to drive them, and the single low-voltage supply was also much simpler than Nixie or even VFD systems.

Sounds perfect, right? Well, [Alec] has a bone to pick with this technology. The displays were quite dim, poorly assembled, and not very pleasing to look at. RCA didn’t bother tilting the “8” to fit the decimal point in! Even the display background was gray, causing the numbers to wash out in ambient light. Black would have been much better. In [Alec]’s words, the best way to describe the display would be “Janky,” yet he still enjoys them. In fact, he built a fancy retro-industrial-themed clock with them.

The Numitron was not a failure, though — we know variants of this display ended up in everything from gas pumps to aircraft cockpit gauges. You can even build an LED-based replica clock — no glowing filaments necessary.

Continue reading “Plight Of The Lowly Numitron Tube”

PeLEDs: Using Perovskites To Create LEDs Which Also Sense Light

With both of the dominant display technologies today – LCD and OLED – being far from perfect, there is still plenty of room in the market for the Next Big Thing. One of the technologies being worked on is called PeLED, for Perovskite LED. As a semiconductor material, it can both be induced to emit photons as well as respond rather strongly to incoming photons. That is a trick that today’s displays haven’t managed without integrating additional sensors. This technology could be used to create e.g. touch screens without additional hardware, as recently demonstrated by [Chunxiong Bao] and colleagues at Linköping University in Sweden and Nanjing University in China.

Their paper in Nature Electronics describes the construction of photo-responsive metal halide perovskite pixels, covering the typical red (CsPbI3−xBrx), green (FAPbBr3), and blue (CsPbBr3−xClx) wavelengths. The article also describes the display’s photo-sensing ability to determine where a finger is placed on the display. In addition, it can work as an ambient light sensor, a scanner, and a solar cell to charge a capacitor. In related research by [Yun Gao] et al. in Nature Electronics, PeLEDs are demonstrated with 1 microsecond response time.

As usual with perovskites, their lack of stability remains their primary obstacle. In the article by [Chunxiong Bao] et al. the manufactured device with red pixels was reduced to 80% of initial brightness after 18.5 hours. While protecting the perovskites from oxygen, moisture, etc. helps, this inherent instability may prevent PeLEDs from ever becoming commercialized in display technology. Sounds like a great challenge for the next Hackaday Prize!

Korean Multifunction Counter Teardown

[Thomas Scherrer] likes to tear down old test equipment, and often, we remember the devices he opens up or — at least — we’ve heard of them. However, this time, he’s got a Hung Chang HC-F100 multifunction counter, which is a vintage 1986 instrument that can reach 100 MHz.

Inside, the product is clearly a child of its time period. There’s a transformer for the linear supply, through-hole components, and an Intersil frequency counter on a chip. Everything is easy to get to and large enough to see.

Continue reading “Korean Multifunction Counter Teardown”

Hackaday Links Column Banner

Hackaday Links: July 7, 2024

Begun, the Spectrum Wars have. First, it was AM radio getting the shaft (last item) and being yanked out of cars for the supposed impossibility of peaceful coexistence with rolling broadband EMI generators EVs. That battle has gone back and forth for the last year or two here in the US, with lawmakers even getting involved at one point (first item) by threatening legislation to make terrestrial AM radio available in every car sold. We’re honestly not sure where it stands now in the US, but now the Swiss seem to be entering the fray a little up the dial by turning off all their analog FM broadcasts at the end of the year. This doesn’t seem to be related to interference — after all, no static at all — but more from the standpoint of reclaiming spectrum that’s no longer turning a profit. There are apparently very few analog FM receivers in use in Switzerland anymore, with everyone having switched to DAB+ or streaming to get their music fix, and keeping FM transmitters on the air isn’t cheap, so the numbers are just stacked against the analog stations. It’s hard to say if this is a portent of things to come in other parts of the world, but it certainly doesn’t bode well for the overall health of terrestrial broadcasting. “First they came for AM radio, and I did nothing because I’m not old enough to listen to AM radio. But then they came for analog FM radio, and when I lost my album-oriented classic rock station, I realized that I’m actually old enough for AM.”

Continue reading “Hackaday Links: July 7, 2024”

New Battery Has No Anode

Conventional batteries have anodes and cathodes, but a new design from the University of Chicago and the University of California San Diego lacks an anode. While this has been done before, according to the University, this is the first time a solid-state sodium battery has successfully used this architecture.

Sodium is abundant compared to lithium, so batteries that use sodium are attractive. According to the University of Chicago’s news release:

Anode-free batteries remove the anode and store the ions on an electrochemical deposition of alkali metal directly on the current collector. This approach enables higher cell voltage, lower cell cost, and increased energy density…

Continue reading “New Battery Has No Anode”

C Compiler Exists Entirely In Vim

8cc.vim is a C compiler that exists as pure Vimscript. Is it small? It sure is! How about fast? Absolutely not! Efficient? Also no. But does it work and is it neat? You betcha!

Ever typed :wq to write the buffer and exit in Vim? When you do that, you’re using Vimscript. Whenever one enters command mode : in Vim, one is in fact using a live Vimscript interpreter. That’s the space in which this project exists and does its magic. Given enough time, anyway.

Vimscript itself was created by [Bram Moolenaar] in 1991. The idea was to execute batches of vim commands programmatically. It’s been used for a variety of purposes since then.

8cc is a lightweight C compiler that has been supplanted by chibicc, but that doesn’t matter much because as author [rhysd] admits, this is really just a fun concept project more than anything. It may take twenty minutes or more to compile “hello world”, but doing it entirely from within Vim is a trip.