The Amstrad E-m@iler, The Right Product With The Wrong Business Model

One of the joys of the UK’s Electromagnetic Field hacker camp lies in the junk table, where trash turns to treasure in the blink of an eye. This year I returned relatively unscathed from my few days rifling through the tables,but I did snag a few pieces. One of them is a wired telephone, which would be a fairly unremarkable find were it not for its flip-up LCD screen and QWERTY keyboard.

My prize is a 2002 Amstrad E-m@iler Plus, one of a series of internet-equipped telephones from the British budget electronics company. The device itself and the story behind it make for a fascinating tale of a dotcom-era Internet flop, and a piece of hardware that could almost tempt today’s hackers.

You’ve Heard Of The Dotcom Boom, But Have You Heard Of The Hardware?

In the late 1990s, everything was about the Internet, but seemingly few outside the kind of people who read Hackaday really understood what it was really about. I’ve written before on these page about how hype blinded the CD-ROM industry to the shortcomings of its technology, but while that had in reality only gripped the publishing business, the Internet hype which followed had everyone in its thrall. You’re probably familiar with the story of the dotcom boom and crash as startup companies raised millions on shaky foundations before folding when they couldn’t deliver, but in parallel with that there was also a parallel world for hardware. The future was going to be connected, but on what and whose hardware would that connection happen? Continue reading “The Amstrad E-m@iler, The Right Product With The Wrong Business Model”

Torment Poor Milton With Your Best Pixel Art

One of the great things about new tech tools is just having fun with them, like embracing your inner trickster god to mess with ‘Milton’, an AI trapped in an empty room.

Milton is trapped in a room is a pixel-art game with a simple premise: use a basic paint interface to add objects to the room, then watch and listen to Milton respond to them. That’s it? That’s it. The code is available on the GitHub repository, but there’s also a link to play it live without any kind of signup or anything. Give it a try if you have a few spare minutes.

Under the hood, the basic loop is to let the user add something to the room, send the picture of the room (with its new contents) off for image recognition, then get Milton’s reaction to it. Milton is equal parts annoyed and jumpy, and his speech and reactions reflect this.

The game is a bit of a concept demo for Open Souls whose “thing” is providing AIs with far more personality and relatable behaviors than one typically expects from large language models. Maybe this is just what’s needed for AI opponents in things like the putting game of Connect Fore! to level up their trash talking.

The SpinMeister, For A Perfect Pizza Every Time!

If you don’t happen to have a traditional stone-floored domed clay oven on hand, it can be surprisingly challenging to make a pizza that’s truly excellent. Your domestic oven does a reasonable job, but doesn’t really get hot enough. Even a specialist pizza oven such as [Yvo de Haas]’ Ooni doesn’t quite do the best possible, so he’s upgraded it with the SpinMeister — a system for precise timing of the heat, and controlled rotation of the cooking stone for an even result.

The spinning part is handled by a stepper motor, driving a hex shaft attached to the bottom of the stone through a chuck. The rotating bearing itself is from an aftermarket stone rotator kit. The controller meanwhile is a smart 3D printed unit with a vacuum-fluorescent display module, powered from an Arduino Nano. There’s a motor controller to handle driving the stepper, and an MP3 module for audible warning. It’s all powered from a USB-C powerbank, for true portability. He’s produced a video showing it cooking a rather tasty-looking flatbread, which we’ve placed below. Now for some unaccountable reason, we want pizza.

If you recognize [Yvo]’s name, then perhaps it’s because he’s appeared on these pages a few times. Whether it’s a tentacle robot or something genuinely different in 3D printing, his work never ceases to be interesting.

Continue reading “The SpinMeister, For A Perfect Pizza Every Time!”

Using The Wind And Magnets To Make Heat

On the face of it, harnessing wind power to heat your house seems easy. In fact some of you might be doing it already, assuming you’ve got a wind farm somewhere on your local grid and you have an electric heat pump or — shudder — resistive heaters. But what if you want to skip the middleman and draw heat directly from the wind? In that case, wind-powered induction heating might be just what you need.

Granted, [Tim] from the Way Out West Blog is a long way from heating his home with a windmill. Last we checked, he didn’t even have a windmill built yet; this project is still very much in the experimental phase. But it pays to think ahead, and with goals of simplicity and affordability in mind, [Tim] built a prototype mechanical induction heater. His design is conceptually similar to an induction cooktop, where alternating magnetic fields create eddy currents that heat metal cookware. But rather than using alternating currents through large inductors, [Tim] put 40 neodymium magnets with alternating polarity around the circumference of a large MDF disk. When driven by a drill press via some of the sketchiest pullies we’ve seen, the magnets create a rapidly flipping magnetic field. To test this setup, [Tim] used a scrap of copper pipe with a bit of water inside. Holding it over the magnets as they whiz by rapidly heats the water; when driven at 1,000 rpm, the water boiled in about 90 seconds. Check it out in the video below.

It’s a proof of concept only, of course, but this experiment shows that a spinning disc of magnets can create heat directly. Optimizing this should prove interesting. One thing we’d suggest is switching from a disc to a cylinder with magnets placed in a Halbach array to direct as much of the magnetic field into the interior as possible, with coils of copper tubing placed there.
Continue reading “Using The Wind And Magnets To Make Heat”

One-handed PS-OHK Keyboard Doesn’t Need Chording Or Modifier Keys

Most one-handed keyboards rely on modifier keys or chording (pressing multiple keys in patterns) to stretch the functionality of a single hand’s worth of buttons. [Dylan Turner]’s PS-OHK takes an entirely different approach, instead putting 75 individual keys within reach of a single hand, with a layout designed to be practical as well as easy to get used to.

We can’t help but notice Backspace isn’t obvious in the prototype, but it’s also a work in progress.

The main use case of the PS-OHK is for one hand to comfortably rest at the keyboard while the other hand manipulates a mouse in equal comfort. There is a full complement of familiar special keys (Home, End, Insert, Delete, PgUp, PgDn) as well as function keys F1 to F12 which helps keep things familiar.

As for the rest of the layout, we like the way that [Dylan] clearly aimed to maintain some of the spatial relationship of  “landmark” keys such as ESC, which is positioned at the top-left corner of its group. Similarly, arrow keys are grouped together in the expected pattern.

One-handed keyboards usually rely on modifier keys or multi-key chording and it’s interesting to see work put into a different approach that doesn’t require memorizing strange layouts or input patterns.

Want to make your own? The GitHub repository has everything you need. Accommodating the 75 physical keys requires a large PCB, but it’s a fairly straightforward shape and doesn’t have any oddball manufacturing requirements, which means getting it made should be a snap.

How The CD-ROM Lost The Multimedia Dream To The Internet

High-tech movie guides on CD-ROM; clearly the future had arrived in 1994.
High-tech movie guides on CD-ROM; clearly the future had arrived in 1994.

In the innocent days of the early 90s the future of personal computing still seemed to be wide open, with pundits making various statements regarding tis potential trajectories. To many, the internet and especially the World Wide Web didn’t seem to be of any major significance, as it didn’t have the reach or bandwidth for the Hot New Thingtm in the world of PCs: multimedia. Enter the CD-ROM, which since its introduction in 1985 had brought the tantalizing feature of seemingly near-infinite storage within reach, and became cheap enough for many in the early 90s. In a recent article by [Harry McCracken] he reflects on this era, and how before long it became clear that it was merely a bubble.

Of course, there was a lot of good in CD-ROMs, especially when considering having access to something like Encarta before Wikipedia and broadband internet was a thing. It also enabled software titles to be distributed without the restrictions of floppy disks. We fondly remember installing Windows 95 (without Internet Explorer) off 13 1.44 MB floppies, followed by a few buckets of Microsoft Office floppies. All pray to the computer gods for no sudden unreadable floppy.

Inevitably, there was a lot of shovelware on CD-ROMs, and after the usefulness of getting free AOL floppies (which you could rewrite), the read-only CD-ROMs you got in every magazine and spam mailing were a big disappointment. Although CD-ROMs and DVDs still serve a purpose today, it’s clear that along with the collapse of the Internet Bubble of the late 90s, early 2000s, optical media has found a much happier place. It’s still hard to beat the sheer value of using CD-R(W)s and DVD-/+R(W)s (and BD-Rs) for offline backups, even if for games and multimedia they do not appear to be relevant any more.

If you’re interested in another depiction of this period, it’s somewhere we’ve been before.

A PCB business card that plays tic-tac-toe with red and blue LEDs.

2024 Business Card Challenge: Go Tic-Tac-Toe-to-Toe With Them

There is perhaps no more important time to have a business card than when you’re in college, especially near the end when you’re applying for internships and such. And it’s vital that you stand out from the crowd somehow. To that end, Electrical & Computer Engineer [Ryan Chan] designed a tidy card that plays tic-tac-toe.

Instead of X and O, the players are indicated by blue and red LEDs. Rather than having a button at every position, there is one big control button that gets pressed repeatedly until your LED is in the desired position, and then you press and hold to set it and switch control to the other player. In addition to two-player mode, the recipient of your card can also play alone against the ATMega.

The brains of this operation is an ATMega328P-AU with the Arduino UNO bootloader for ease of programming. Schematic and code are available if you want to make your own, but we suggest implementing some type of changes to make it your own. Speaking of, [Ryan]  has several next steps in mind, including charlieplexing the LEDs, using either USB-C or a coin cell for power, upgrading the AI, and replacing the control button with a capacitive pad or two. Be sure to check it out in action in the two videos after the break.

Continue reading “2024 Business Card Challenge: Go Tic-Tac-Toe-to-Toe With Them”