Quix Furniture For Modular Furniture Fun

If you’re someone who moves a lot, or just likes to change your decor, the limitations of conventional furniture can be a bit of a pain. Why not build your furniture modularly, so it can change with you?

QUIX is a modular building system designed for furnishings developed by [Robert Kern]. Giving people the ability to “build any kind of furniture in minutes with no tools,” it seems like a good gateway for people who love building with LEGO but find the pegs a little uncomfortable and expensive for full-sized chairs and couches. Anything that makes making more accessible is an exciting development in our book.

Featuring a repeating series of interlocking hooks, the panels can be produced via a number of techniques like CNC, laser cutter, or even smaller 3D printed models. Dowels and elastic bands serve as locks to prevent the furniture from tilting and since you have such a wide variety of panel materials to choose from, the color combinations can range from classic plywood to something more like a Mondrian.

If you’re looking for more modular inspiration for your house, how about gridbeam or Open Structures? If you’re wanting your furniture more musically-inclined, try Doodlestation instead.

Continue reading “Quix Furniture For Modular Furniture Fun”

3D-Printed RC Car Focuses On Performance Fundamentals

There are a huge number of manufacturers building awesome radio-controlled cars these days. However, sometimes you just have to go your own way. That’s what [snamle] did with this awesome 3D-printed RC car—and the results are impressive.

This build didn’t just aim to build something that looked vaguely car-like and whizzed around on the ground. Instead, it was intended to give [snamle] the opporunity to explore the world of vehicle dynamics—learning about weight distribution, suspension geometry, and so many other factors—and how these all feed into the handling of a vehicle. The RC side of things is all pretty straightforward—transmitter, receiver, servos, motors, and a differential were all off-the-shelf. But the chassis design, the steering, and suspension are all bespoke—designed by [snamle] to create a car with good on-road handling and grip.

It’s a small scale testbed, to be sure. Regardless, there’s no better way to learn about how a vehicle works on a real, physical level—you can’t beat building one with your own two hands and figuring out how it works.

It’s true, we see a lot of 3D printed RC cars around these parts. Many are built with an eye to robotics experimentation or simply as a learning exercise. This one stands out for its focus on handling and performance, and of course that nicely-designed suspension system. Video after the break.

Continue reading “3D-Printed RC Car Focuses On Performance Fundamentals”

Simple Hardware Store Hack Keeps Your PCBs Right Where You Want Them

Sometimes it’s the simplest hacks that make the biggest impact.

Take these DIY magnetic PCB vises for example. Sure, you can go out and buy purpose-built tools, but [Dylan Radcliffe] just made a trip to the hardware store for some nuts and bolts. He chose 3/8″-16 bolts, which would probably be around M10 for the rest of the world. The head of each bolt is ground flat so a ceramic disc magnet can be attached to it with CA glue, while the head of the bolt gets a plastic washer glued to it. Another plastic washer gets glued to a nut, which when threaded onto the bolt provides the light clamping force needed to hold a PCB. Make four of those and stick them to a steel plate with the magnets, and you can stop chasing your boards around the bench with a soldering iron.

As much as we like this idea — and we do; we’re heading to Home Depot to buy the needed parts this very evening — we can think of a few useful modifications. With a long bolt and two nuts rather than one, you could make a set of vises that are easily adjustable along the Z-axis. This could prove useful to those of us working under a microscope. Also, rather than making the bolts the magnetic part we bet you could lay down a flexible magnetic sheet, the kind you can feed into a printer to roll your own fridge magnets. We suspect that would hold the bolts firmly enough for most work while still allowing easy repositioning. We’d also favor flange nuts over plain hex nuts, to give a larger clamping area. We’d still include the plastic washers, though, or possibly switch to rubber ones.

There’s more than one way to skin this cat, of course, especially if you’ve got a Harbor Freight nearby and a well-stocked Lego bin.

Hackaday Podcast Episode 303: The Cheap Yellow Display, Self-Driving Under $1000, And Don’t Remix That Benchy

As the holiday party season fades away into memory and we get into the swing of the new year, Elliot Williams is joined on the Hackaday Podcast by Jenny List for a roundup of what’s cool in the world of Hackaday. In the news this week, who read the small print and noticed that Benchy has a non-commercial licence? As the takedown notices for Benchy derivatives fly around, we muse about the different interpretations of open source, and remind listeners to pay attention when they choose how to release their work.

The week gave us enough hacks to get our teeth into, with Elliot descending into the rabbit hole of switch debouncing, and Jenny waxing lyrical over a crystal oscillator. Adding self-driving capability to a 30-year-old Volvo caught our attention too, as did the intriguing Cheap Yellow Display, an ESP32 module that has (almost) everything. Meanwhile in the quick hacks, a chess engine written for a processor architecture implemented entirely in regular expressions impressed us a lot, as did the feat of sending TOSLINK across London over commercial fibre networks. Enjoy the episode, and see you again next week!

Continue reading “Hackaday Podcast Episode 303: The Cheap Yellow Display, Self-Driving Under $1000, And Don’t Remix That Benchy”

2024 Brought Even More Customization To Boxes.py

If you have access to a laser cutter, we sincerely hope you’re aware of boxes.py. As the name implies, it started life as a Python tool for generating parametric boxes that could be assembled from laser-cut material, but has since become an invaluable online resource for all sorts of laser projects. Plus, you can still use it for making boxes.

But even if you’ve been using boxes.py for awhile, you might not know it was actually an entry in the Hackaday Prize back in 2017. Creator [Florian Festi] has kept up with the project’s Hackaday.io page all this time, using it as a sort of development blog, and his recent retrospective on 2024 is a fascinating read for anyone with an eye towards hot photonic action.

Continue reading “2024 Brought Even More Customization To Boxes.py”

VPlayer Puts Smart Display In Palm Of Your Hand

It’s not something we always think about, but the reality is that many of the affordable electronic components we enjoy today are only available to us because they’re surplus parts intended for commercial applications. The only reason you can pick up something like a temperature sensor for literal pennies is because somebody decided to produce millions of them for inclusion in various consumer doodads, and you just happened to luck out.

The vPlayer, from [Kevin Darrah] is a perfect example. Combining a 1.69 inch touch screen intended for smartwatches with the ESP32-S3, the vPlayer is a programmable network-connected display that can show…well, pretty much anything you want, within reason. As demonstrated in the video below, applications range from showing your computer’s system stats to pulling in live images and videos from the Internet.

Continue reading “VPlayer Puts Smart Display In Palm Of Your Hand”

Full Color 3D Printing With PolyDye And Existing Inkjet Cartridges

The PolyDye system installed on an Elegoo Neptune 2 printer. (Credit: Teaching Tech, YouTube)

Being able to 3D print FDM objects in more than one color is a feature that is rapidly rising in popularity, assisted by various multi-filament systems that allow the printer to swap between differently colored filaments on the fly. Naturally, this has the disadvantage of being limited in the number of colors, as well as wasting a lot of filament with a wipe tower and filament ‘poop’. What if you could print color on the object instead? That’s basically what the community-made PolyDye project does, which adds an inkjet cartridge to an existing FDM printer.

In the [Teaching Tech] video the PolyDye technology is demonstrated, which currently involves quite a few steps to get the colored 3D model from the 3D modelling program into both OrcaSlicer (with custom profile) and the inkjet printing instructions on the PolyDye SD card. After this the 3D object will be printed pretty much as normal, just with each layer getting a bit of an ink shower.

Although it could theoretically work with any FDM printer, currently it’s limited to Marlin-based firmware due to some prerequisites. The PolyDye hardware consists of a main board, daughter board, printed parts (including inkjet cartridge holder) and some wiring. A Beta Test unit is available for sale for $199, but you should be able to DIY it with the files that will be added to the GitHub project.

Even for a work-in-progress, the results are quite impressive, considering that it only uses off-the-shelf translucent filament and inkjet cartridges as consumables. With optimizations, it could give multi-filament printing a run for its money.

Continue reading “Full Color 3D Printing With PolyDye And Existing Inkjet Cartridges”