Automate The Freight: The Convenience Store That Comes To Your Door

For as popular as they became during the COVID-19 lockdowns, grocery delivery services like InstaCart rely on a basic assumption to work: that customers know exactly what they want when they order. Once that hurdle is overcome, the transaction is simple — the driver accepts the job, drives to the store to pick up the order, and takes it to the customer. It requires the use of a fair amount of technology to coordinate everything, but by and large it works, and customers are generally willing to pay for the convenience.

But what if you could cut out that step where the driver goes to pick up your order? What if instead of paying someone to pick and pack your order and bring it to your front step, you just ordered up the whole store instead? That’s the idea behind Robomart, which seeks to deploy a fleet of mobile stores for when the convenience store isn’t quite convenient enough.  And the way the company is choosing to roll out its service, not to mention the business model itself, may hold key lessons for other delivery automation platforms.

Continue reading “Automate The Freight: The Convenience Store That Comes To Your Door”

Revolving Doors Aren’t Just Annoying, They’re Energy Saving Too

While most of us have been content with swing and sliding doors for the vast majority of our needs around the home, the revolving door remains popular in a wide variety of contexts.

It’s a confounding contraption that always feels ready to snatch and ensnare the unwary user. However, these doors do have certain benefits that have allowed them to retain popularity in many public buildings around the world. Let’s dive in to why below.

Continue reading “Revolving Doors Aren’t Just Annoying, They’re Energy Saving Too”

3D Printed Protection Against “Under-Door” Attacks

“Under-door” style attacks are when an attacker slides a tool through the gap underneath a door, hooks the interior handle from below, and opens the door by pulling the handle downward. This kind of attack works on the sort of doors and locks commonly found in hotels, where turning the handle from the inside always results in an open door. [Michal Jirků] found himself in a hotel room with a particularly large gap underneath the door, and decided to quickly design and print a door guard to protect against just such an attack.

It’s a simple object, and twenty minutes of printing and a little double-sided tape is all it takes to deploy. Because an attacker performs an under-door attack with a sizable mechanical disadvantage, it doesn’t take much to frustrate the attempt, and that’s exactly what the object does. Physical security in hotels is especially important, after all, and crooks have been known to exploit known flaws like the face-palmingly bad Onity key card lock exploit.

If you’re having trouble picturing how it all works, this video demonstrates an under-door attack in action, so you can see how blocking the space by the handle would easily prevent the tool from getting where it needs to go.

2022 Sci-Fi Contest: A Very Star Wars Door

Every fan of the original Star Wars trilogy knows the plight of Han Solo, who was so cruelly frozen in carbonite by Imperial forces. [erv.plecter] came into possession of a replica Solo, this time frozen in polyurethane, and set about using it as the door for a home theater setup.

Just like in the movie, there are a series of controls and lights on the side of the door, clearly intended to represent the state of the carbonite block and the smuggler trapped within. This was achieved with the use of a SAMD51 microcontroller, which controls five meters of WS2812B LED strip along with a small OLED display.

There’s also an amazing little smoke effect, built using a vape inhaler. These devices have proved popular for all kinds of theme builds and costumes, as it turns out. They’re a great way to produce a visible fog or smoke in a tiny, compact package.

[erv.plecter] was kind enough to share plenty of details on the build, including how the polyurethane cast was assembled into the door. The final result looks remarkably authentic, and would surely prove a hit at any Star Wars movie night. Just don’t spoil things by forcing everyone to sit through Revenge of the Sith. Video after the break. Continue reading “2022 Sci-Fi Contest: A Very Star Wars Door”

Tech In Plain Sight: Car Doors

There are a lot of common phrases that no longer mean what they used to. For example, you may have used the term “turn on the lights.” What are you actually turning? Where does this come from? Old gas lights had a valve that you did physically turn, and the phrase simply stuck around. Kids of the 90s have no idea why they “dial” a phone number. What about “roll up the car window”?  You don’t often encounter old-fashioned car doors with manual locks or a crank to roll up the window. These days it is all electronic. But have you ever wondered what’s going on inside there?

Let’s take a look at car doors, how they keep you safe, and how that sheet of glass slides into place, sealing against wind, rain, and noise. Of course, there are fancy car doors like suicide doors or sexy-but-impractical gull wing doors. At least one concept car even has a door that disappears under the vehicle when it opens; check out the video below. But even garden-variety doors are marvels of mechanical engineering. A compact structure that is secure and — mostly — reliable. Let’s look at how they do that.

Continue reading “Tech In Plain Sight: Car Doors”

A large PCB with empty sockets

Sensor Playground Keeps Track Of Indoor Air Quality Through The Cloud

When [tdw] wasn’t feeling well one day, his wife suggested that it might be due to poor air quality in their home. While an ordinary person could have simply opened a window after hearing such an idea, [tdw] instead showed his true hacker spirit and set about measuring the indoor air quality. He began by designing a simple PCB to measure CO2 and volatile organic compound (VOC) levels, but eventually broadened his scope to end up with the Sensor Playground: a plug-and-play platform to read out various sensors and store the results in the cloud.

A large PCB with several sensor modules and a microcontrollerDeliberately designed to be easy to assemble with minimal soldering skills, the Sensor Playground consists of a big two-layer PCB onto which various modules can be plugged. It supports either an ESP32 DevKit or an Adafruit Feather module to provide processing power, and provides sockets for a bunch of sensors, conveniently wired with power and SPI or I2C. It also provides a rotary encoder and two buttons for user input. All source files are available on [tdw]’s GitHub page, ready to be applied to any kind of sensing task.

[tdw] set up his Sensor Playground with sensors measuring CO2, VOC, PM2.5 (particulate matter), as well as temperature and relative humidity. A web interface allows anyone to track these measurements in real-time. The open and modular design should make it easy to extend this system with various other sensor types: we can imagine that things like solar irradiation, outside temperature and wind speed would also add useful data to the mix. Perhaps even a Geiger counter to keep track of radiation levels?

As indoor air quality sensors go, this one is definitely comprehensive and easy to use. We’ve featured other air quality sensors before, some of which also link their data to the cloud.

DIY Super-Bright Outdoor TV With Watercooling

Watching TV or playing a console game is usually not an outdoor activity, helped by the fact that you can’t see anything on your average TV in direct sunlight. However, with some basic fabrication skills, [Matt] from [DIY Perks] demonstrates how to upgrade an LCD TV to be viewable in the brightest conditions by upgrading its backlight, and adding a simple water-cooling system in the process. Full build video after the break.

An LCD panel doesn’t produce any light but acts as a filter for the backlight behind it, which is just a widely spaced array of white LEDs. The core of the build is upgrading the backlight, so [Matt] picked up a large 4K TV with a partially faulty backlight for a very affordable price. The new backlight consists of a set of high-brightness LED panels, screwed to a sheet of aluminum. The LEDs generate a lot of heat, so [Matt] cools the back of the aluminum sheet with a budget-friendly water cooling system built from a car radiator, small water pump, and some clear plastic tubing. Everything is housed in an industrial-looking enclosure made from aluminum sheet, aluminum extrusions, and an acrylic back panel. To protect the LCD panel, it’s glued to a sheet of tempered glass from an old coffee table.

The final product performs very well, even in direct sunlight, and is also weatherproof. [DIY Perks] is known for projects that work as well as they look, like his triple-screen luggable PC or massive bellow-cooled PC. Continue reading “DIY Super-Bright Outdoor TV With Watercooling”