The mod as installed into the handheld, complete with the custom 3D-printed back, with a screwdriver being used to install one of the screws

A ROG Ally Battery Mod You Ought To Try

Today’s hack is an unexpected but appreciated contribution from members of the iFixit crew, published by [Shahram Mokhtari]. This is an ROG Ally Asus-produced handheld gaming console mod that has you upgrade the battery to an aftermarket battery from an Asus laptop to double your battery life (40 Wh to 88 Wh).

There are two main things you need to do: replace the back cover with a 3D printed version that accommodates the new battery, and move the battery wires into the shell of an old connector. No soldering or crimping needed — just take the wires out of the old connector, one by one, and put them into a new connector. Once that is done and you reassemble your handheld, everything just works; the battery is recognized by the OS, can be charged, runs the handheld wonderfully all the same, and the only downside is that your ROG Ally becomes a bit thicker.

Continue reading “A ROG Ally Battery Mod You Ought To Try”

Kid’s Ride Gets Boosted Battery, ESP32 Control

That irresistible urge to rescue an interesting piece of hardware from the trash is something that pretty much every Hackaday reader will have felt at one time or another. Sometimes it’s something that you could put to work immediately, like an old computer or some scrap piece of material that’s just the right size. But other times, you find something on the side of the road that ends up being the impetus for a whole new project.

For [David Bertet], finding a beat up kid’s Jeep Wrangler on the curb was the first step towards a journey that ends with PowerJeep: an open source project that we wager could end up saving similar vehicles from the landfill. The basic idea is simple enough — strip out the vehicle’s original 12 volt power supply and replace it with 18 V provided by easily swappable tool batteries. But as is often the case, it’s the details and the documentation that sets this project apart.

Continue reading “Kid’s Ride Gets Boosted Battery, ESP32 Control”

A vanadium based flow battery made with 3D printed parts

A Vanadium Redox Flow Battery You Can Build

Vanadium flow batteries are an interesting project, with the materials easily obtainable by the DIY hacker. To that effect [Cayrex2] over on YouTube presents their take on a small, self-contained flow battery created with off the shelf parts and a few 3D prints. The video (embedded below) is part 5 of the series, detailing the final construction, charging and discharging processes. The first four parts of the series are part 1, part 2, part 3, and part 4.

The concept of a flow battery is this: rather than storing energy as a chemical change on the electrodes of a cell or in some localised chemical change in an electrolyte layer, flow batteries store energy due to the chemical changediagram of a vanadium flow battery of a pair of electrolytes. These are held externally to the cell and connected with a pair of pumps. The capacity of a flow battery depends not upon the electrodes but instead the volume and concentration of the electrolyte, which means, for stationary installations, to increase storage, you need a bigger pair of tanks. There are even 4 MWh containerised flow batteries installed in various locations where the storage of renewable-derived energy needs a buffer to smooth out the power flow. The neat thing about vanadium flow batteries is centred around the versatility of vanadium itself. It can exist in four stable oxidation states so that a flow battery can utilise it for both sides of the reaction cell.

Continue reading “A Vanadium Redox Flow Battery You Can Build”

A Simple Hack For Running Low-Power Gear From A USB Battery Pack

We’ve all been there. You’ve cooked up some little microcontroller project, but you need to unhook it from your dev PC and go mobile. There’s just one problem — you haven’t worked up a battery solution yet. “No problem!” you exclaim. “I’ll just use a USB battery pack!” But the current draw is too low, and the pack won’t stay on. “Blast!” you exclaim, because you’ve been watching too much Family Guy or something.

[PatH] had this very problem recently, when trying to work with Meshtastic running on a RAKwireless WisBlock Base Board. You’re supposed to hook up your own rechargeable LiPo battery, but [PatH] was in a hurry. Instead, a USB battery pack was pressed into service, but it kept shutting down. The simple trick was to just add a 100-ohm resistor across the device’s battery terminals. That took the current draw from just 15 mA up to 53 mA, which was enough to keep portable USB power banks interested in staying switched on.

It’s an easy hack for an oddball problem, and it just might get you out of a bind one day. If you’ve got any nifty tricks like this up your sleeve, don’t hesitate to let us know!

Betavoltaic Battery Rated To Provide Power For 50 Years

A newly introduced battery called the BV100 by Chinese Betavolt Technology promises to provide half a century of power, at 100 μW in a 15x15x5 mm package. Inside the package are multiple, 2 micron-thick layers nickel-63 isotope placed between 10 micron-thick diamond semiconductor, with each diamond layer using the principle of betavoltaics to induce an electrical current in a similar fashion to a solar panel using light. Ni-63 is a β emitter with a half-life of 100 years, that decays into copper-63 (Cu-63), one of the two stable forms of copper.

From the battery’s product page we can glean a bit more information, such as that the minimum size of the betavoltaic battery is 3x3x0.03 mm with one layer of Ni-63 and two semiconductor layers, allowing for any number of layers to be stacked to increase the power output within a given package. Also noted is that the energy conversion rate of the β energetic event is about 8.8%, which could conceivably be improved in the future.

Although this battery may seem new, it’s actually based on a number of years of research  in diamond semiconductors in betavoltaics, with V. S. Bormashov and colleagues in 2018 reporting on a similar diamond semiconductor with Ni-63 isotope layer battery. They noted a battery specific energy of 3300 mWh/g. Related research by Benjian Liu and colleagues in 2018 showed an alphavoltaic battery, also using diamond semiconductor, which shows another possible avenue of development, since alpha particles are significantly more energetic.

Whether we’ll see Betavolt’s BV100 or similar products appear in commercial products is still uncertain, but they plan to have a 1 Watt version ready by 2025, which when packaged into the size of an average Li-ion battery pack could mean a mobile power source that will power more than a pacemaker, and cost less than the nuclear batteries powering the two Voyager spacecraft and all active Mars rovers today.

Aqueous Battery Solves Lithium’s Problems

The demand for grid storage ramps up as more renewable energy sources comes online, but existing technology might not be up to the challenge. Lithium is the most popular option for battery storage right now, not just due to the physical properties of the batteries, but also because we’re manufacturing them at a massive scale already. Unfortunately they do have downsides, especially with performance in cold temperatures and a risk of fires, which has researchers looking for alternatives like aqueous batteries which mitigate these issues.

An aqueous battery uses a water-based electrolyte to move ions from one electrode to the other. Compared to lithium, which uses lithium salts for the electrolyte, this reduces energy density somewhat but improves safety since water is much less flammable. The one downside is that during overcharging or over-current situations, hydrogen gas can be produced by electrolysis of the water, which generally needs to be vented out of the battery. This doesn’t necessarily damage the battery but can cause other issues. To avoid this problem, researchers found that adding a manganese oxide to the battery and using palladium as a catalyst caused any hydrogen generated within the battery’s electrolyte to turn back into water and return to the electrolyte solution without issue.

Of course, these batteries likely won’t completely replace lithium ion batteries especially in things like EVs due to their lower energy density. It’s also not yet clear whether this technology, like others we’ve featured, will scale up enough to be used for large-scale applications either, but any solution that solves some of the problems of lithium, like the environmental cost or safety issues, while adding more storage to an increasingly renewable grid, is always welcome.

Arduino Measures Remaining Battery Power With Zero Components, No I/O Pin

[Trent M. Wyatt]’s CPUVolt library provides a fast way to measure voltage using no external components, and no I/O pin. It only applies to certain microcontrollers, but he provides example Arduino code showing how handy this can be for battery-powered projects.

The usual way to measure VCC is simple, but has shortcomings.

The classical way to measure a system’s voltage is to connect one of your MCU’s ADC pins to a voltage divider made from a couple resistors. A simple calculation yields a reading of the system’s voltage, but this approach has two disadvantages: one is that it constantly consumes power, and the other is that it ties up a pin that you might want to use for something else.

There are ways to mitigate these issues, but it would be best to avoid them entirely. Microchip application note 2447 describes a method of doing exactly that, and that’s precisely what [Trent]’s Arduino library implements.

What happens in this method is one selects Vbg (a fixed internal voltage reference that is temperature-independent) as Vin, and selects Vcc as the ADC’s voltage reference. This is essentially backwards from how the ADC is normally used, but it requires no external hookup and is only a bit of calculation away from determining Vcc in millivolts. There is some non-linearity in the results, but for the purposes of measuring battery power in a system or deciding when to send a “low battery” signal, it’s an attractive solution.

Being an Arduino library, CPUVolt makes this idea very easy to use, but the concept and method is actually something we have seen before. If you’re interested in the low-level details, then check out our earlier coverage which goes into some detail on exactly what is going on, using an ATtiny84.