DIY Pneumatic Actuator Does Great In Action

Pneumatic actuators can be powerful and fast, making them very useful for all kinds of mechanical jobs. [Michael Rechtin] decided that while he could buy them off-the-shelf, he preferred to see if he could make his own via 3D printing. Despite the challenges, he succeeded!

Part of his success is because he knew when to take advantage of the strengths of 3D printed parts, and where they wouldn’t perform so well. To that end, the main body of the cylinder is actually a piece of PVC pipe. That’s because manufactured PVC pipe is far smoother and more regular than what you could reasonably achieve with a most 3D printers. The end caps, however, were printed and tapped to take standard air fittings. The piston was printed too, fitted with a steel cylinder rod and O-rings for sealing.

The double-acting cylinder performed remarkably well in testing, easily skewering an orange. The initial version did leak a touch, but later revisions performed better. Springs were also fitted for damping hits at either end which improved longevity, with a test rig racking up over 10,000 cycles without failure.

We love a design that is both easy to build at home and capable of great performance. We’ve featured some neat open-source pneumatic builds before, too.

Continue reading “DIY Pneumatic Actuator Does Great In Action”

Mega-CNC Router Carves Styrofoam Into A Full-Size Flying Delorean

When you own an enormous CNC router, you’ve got to find projects that justify it. So why not shoot for the sky — literally — and build the 1980s-est possible thing: a full-scale flying Delorean.

Attentive readers will no doubt remember [Brian Brocken] from his recent attempt to bring a welding robot out of retirement. That worked quite well, and equipped with a high-speed spindle, the giant ABB robot is now one of the biggest CNC routers we’ve ever seen. As for the flying Delorean, short of the well-known Mr. Fusion mod, [Brian] had to settle for less fictional approaches. The project is still in its early phase, but it appears that the flying car will basically be a huge quadcopter, with motors and propellers hidden under the chassis. That of course means eschewing the stainless steel of the OEM design for something lighter: expanded polystyrene foam (EPS).

The video below shows the fabrication of most of the body, which starts as large blocks of EPS and ends up as shaped panels and an unthinkable amount of dust. Individual pieces are glued together with what looks like plain old PVA adhesive. The standard Delorean “frunk” has been replaced by a louvered assembly that will act as an air intake; we presume the rear engine cover will get the same treatment. Interestingly, the weight of the finished model is almost exactly what Fusion 360 predicted based on the 3D model — a mere 13.9 kg.

[Brian] is currently thrust-testing motors and propellers and has some interesting details on that process in his write-up. There’s obviously a lot of work left on this project, and a lot more dust to be made, and we’ll be eagerly following along. Continue reading “Mega-CNC Router Carves Styrofoam Into A Full-Size Flying Delorean”

Infrared Following Robot Built As Proof-of-Concept For Autonomous Luggage

Once upon a time, the poor humans of the past had to lug around suitcases and trunks with their own arms. Then, some genius figured out that you could just put wheels on and make everyone’s life a million times easier. Now, what if you didn’t even have push, because your luggage could just follow you instead? Well, students [Yuqiang Ge] and [Yiyang Zhao] have figured out a proof of concept for how that could work.

Their build is a small robotic platform that they assembled for their ECE5730 final project. The tiny wheeled robot is programmed to rotate on the spot until its infrared sensors pick up a signal. In turn, the user is intended to carry an infared beacon for it to lock onto. A pair of sensors are used on the robot platform, separated by a board to serve as a blind. The robot determines the relative signal strength from each sensor, and uses that to vary PWM signals to the two DC drive motors to steer the robot platform to seek and follow the infrared beacon.

It’s a neat idea, and looks to work pretty well in a university corridor. It even has an ultrasonic range sensor to (ideally) stop when it gets too close to the user. Whether it would survive the tumult of a crowded airport is another thing entirely, but that’s what the engineering process is about. Indeed, the very concept has been commercialized already!

Following-robots are a common student project, and one well worth exploring if you’re new to the robotic field.

Continue reading “Infrared Following Robot Built As Proof-of-Concept For Autonomous Luggage”

Hardware: It’s Made Of Software!

We had the opportunity to add a new feature to our lineup: the FLOSS Weekly podcast. It’s a very long running series that covers the goings on in the free, libre, and open-source software world. It’s been co-hosted by our own [Jonathan Bennett] for quite a while now, and when This Week in Tech announced that they wanted to cancel it, [Jonathan] asked if he could keep it running over here at Hackaday.

Hackaday is hardware, though. Why would we be hosting a podcast on open software? It’s no secret that a bunch of us are open-source software fans in general here at Hackaday, but take a quick inventory of the various open projects that you use to make and hack your hardware. We use open-source compilers, libraries, and flashing tools to handle the firmware we write on open-source text editors. Heck, half of the time we even program microcontrollers in the open-source MicroPython. We design PCBs in the open-source KiCAD, do CAD/CAM in FreeCAD, and don’t even get me started in the open-source software and firmware underlying the entire 3D printing ecology. Reverse engineering? Free software, from Wireshark straight through to Ghidra.

All of this is to say, that even while we’re making or breaking hardware, we’re using open-source software to do it. So, if you’re interested in peeking behind the curtain, give the FLOSS Weekly a listen.

Digital Bike Horn Will Play Custom Sounds, Please Be Tasteful

When you’re out riding your bike, a horn can be a useful warning device to other road users and pedestrians alike. It can also be a source of fun and amusement, or annoyance, depending on the sounds it makes and how you use it. For the ultimate flexibility, you might like this digital bicycle horn that offers customizable sounds, as developed by [gokux].

The build has attractive two-tone components, consisting of a button pad for playing four sounds, and a sound module with a 3 watt speaker and battery pack. A Seeed Studio XIAO SAMD21 is the heart of the operation, with the microcontroller paired with a DFPlayer Mini which handles sound duties. When one of the four buttons is pressed, the microcontroller loads the relevant sound off an SD card, and plays it out over the speaker. For power, the build uses a lithium rechargeable battery with a healthy 1200 mAh capacity, which can be readily recharged thanks to a TP4056 charger module with a USB-C port.

It’s a nifty little build, and we love the Metal Gear Solid sounds. Though, we do wonder just how audible that 3 watt speaker is. If it proves inadequate, you could always step up to a much larger driver paired with a hefty audio amp if you so desire.

Continue reading “Digital Bike Horn Will Play Custom Sounds, Please Be Tasteful”

UK’s JET Tokamak Retires After 40 Years And 105,842 Pulses

The UK’s most famous fusion reactor – the Joint European Torus (JET) tokamak – saw its first plasma on June 25th of 1983. Its final plasma pulse was generated on December 18th of 2023, for a total of 105,842 pulses over forty-and-a-half years and countless experiments.

Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)
Comparison of toroidal field (TF) coils from JET, JT-60SA and ITER (Credit: QST)

Originally designed in the 1970s by Euratom members, JET formed the core of Europe’s fusion research program, allowing many of the aspects of tokamak systems to be explored, including deuterium-tritium fusion. Its final day of experiments involved an inverted plasma shape prior to targeting electrons at the tokamak’s inner wall, to study the impact of such damage.

Although JET has received a number of upgrades over the decades, the MAST Upgrade and upcoming STEP fusion reactors at the Culham Centre for Fusion Energy (CCFE) are now headed where JET’s design cannot go. Current advanced tokamak reactors like Japan’s JT-60SA are increasingly using super-conducting coils with  often plasma volumes far beyond JET’s, with the focus shifting from plasma research to net energy production.

This means that unless JET somehow gets repurposed/upgraded and recommissioned, this is the final goodbye to one of the world’s most famous and influential fusion reactors.

(Top image: Internal view of the JET tokamak superimposed with an image of plasma flows)

Raspberry Pi Pico Becomes MIDI-Compatible Synth

ECE 4760 is a microcontroller course that runs at Cornell every year, and it gives students a wide remit to pursue various kinds of microcontroller projects. [Pelham Bergesen] took the class and built himself a MIDI-controllable synthesizer out of a Raspberry Pi Pico.

[Pelham] coded a library to parse MIDI messages on the Pico, with the microcontroller’s UART charged with receiving the input data. MIDI is basically just serial at a baud rate of 31.25k, with a set message structure, after all. From there, the Pico takes the note data and plays the relevant frequencies by synthesizing square waves using a PWM output. A second PWM channel can also be blended with the first to generate more complex tones.  The synthesizer is designed to be used with a source of MIDI note data such as a keyboard controller; [Pelham] demonstrates the project in use with a Roland JD-XI. It’s a fairly basic synthesizer, but [Pelham] does a good job of explaining all the steps required to get this far. If you’ve never done an audio or MIDI project before, you might find his guide very helpful for the way it steps through the basics.

[Pelham] didn’t get to implement fancier features like direct digital synthesis (DDS) or analog audio effects before the class closed out. However, that would be an excellent project for anyone else developing their own Pico synthesizer. If you whip up something that sounds good, or even just interesting, be sure to notify us on the tipsline. Video after the break.

Continue reading “Raspberry Pi Pico Becomes MIDI-Compatible Synth”