One-Legged Jumping Robot Shows That Control Is Everything

Robots that can jump have been seen before, but a robot that jumps all the time is a little different. Salto-1P is a one-legged jumping robot at UC Berkeley, and back in 2017 it demonstrated the ability to hop continuously with enough control to keep itself balanced. Since then it has been taught some new tricks; having moved beyond basic stability it can now jump around and upon things with an impressive degree of control.

Key to doing this is the ability to plant its single foot exactly where it wants, which allows for more complex behaviors such as hopping onto and across different objects. [Justin Yim] shows this off in the video embedded below, which demonstrates the Salto-1P bouncing around in a remarkably controlled fashion, even on non-ideal things like canted surfaces. Two small propellers allow the robot to twist in midair, but all the motive force comes from the single leg.

Continue reading “One-Legged Jumping Robot Shows That Control Is Everything”

ROS on Windows 10

Is 2018 Finally The Year Of Windows On The Robot?

Microsoft is bringing ROS to Window 10. ROS stands for Robot Operating System, a software framework and large collection of libraries for developing robots which we recently wrote an introductory article about, It’s long been primarily supported under Linux and Mac OS X, and even then, best under Ubuntu. My own efforts to get it working under the Raspbian distribution on the Raspberry Pi led me to instead download a Pi Ubuntu image. So having it running with the support of Microsoft on Windows will add some welcome variety.

TurtleBot 3 at ROSCon 2018
TurtleBot 3 at ROSCon 2018, Photo: Evan Ackerman/IEEE Spectrum

To announce it to the world, they had a small booth at the recent ROSCon 2018 in Madrid. There they showed a Robotis TurtleBot 3 robot running the Melodic Morenia release of ROS under Windows 10 IoT Enterprise on an Intel Coffee Lake NUC and with a ROS node incorporating hardware-accelerated Windows Machine Learning.

Why are they doing this? It may be to help promote their own machine learning products to roboticists and manufacturing. From their recent blog entry they say:

We’re looking forward to bringing the intelligent edge to robotics by bringing advanced features like hardware-accelerated Windows Machine Learning, computer vision, Azure Cognitive Services, Azure IoT cloud services, and other Microsoft technologies to home, education, commercial, and industrial robots.

Initially, they’ll support ROS1, the version most people will have used, but also have plans for ROS2. Developers will use Microsoft’s Visual Studio toolset. Thus far it’s an experimental release but you can give it a try by starting with the details here.

[Main Image Credit: Microsoft]

Soft Robotic Jellyfish Get Pumped In The Atlantic

In a recent paper in Bioinspiration & Biomimetics, researchers at Florida Atlantic University describe the process of building and testing five free-swimming soft robotic jellyfish. The paper contains build details and data on how three different variables – tentacle stiffness, stroke frequency, and stroke amplitude – affect the swimming characteristics of each bot. For a more in-depth build log, we found the original masters thesis by Jennifer Frame to be very thorough, including processes, schematics, parts lists, and even some Arduino code.

Though a landlubber may say the robots look more like a stumpy octopus than a jellyfish, according to the paper the shape is actually most similar to a juvenile “ephyra stage” moon jellyfish, with 8 short tentacles radiating from a central body. The flexible tentacles are made of a silicon rubber material from Smooth-On, and were cast in 3D printed molds. Inside the waterproof main body is a Teensy 3.2 microcontroller, some flash memory, a nine-axis IMU, a temperature sensor, and a 9 V battery.

There are two flexible resistors embedded in the body to measure tentacle flex, and the actual flexing is done by pumping seawater through open circuit hydraulic channels cast into the tentacles. Two 3 V mini pumps are sufficient for pumping, and the open circuit means that when the pumps turn off, the tentacles bleed off any remaining pressure and quickly snap back to their “neutral” position without the use of complicated valves.

Another simple feature is two hall effect sensors that were mounted in the body to enable waterproof “wireless communication” with the microcontroller. The wireless protocol of choice: manually waving magnets over the sensors to switch the robot between a few predefined operating modes.

There’s a soothing, atmospheric video after the break, where you can see the robots in action off the coast of Florida.

Continue reading “Soft Robotic Jellyfish Get Pumped In The Atlantic”

Build Your Next Dancing Robot From Empty Soda Bottles

When you think about the materials for your next large dancing robot build, soda bottles might not be the first thing that springs to mind. But they could work, according to TrussFab, a project from a group of students at the Hasso Plattner Instituit. Their system uses empty coke bottles and 3D printed connectors to build large structures, modeled in software that checks their load balance and safety. The team has modeled and built designs up to 5 meters high. Now, the project has taken a step further by adding linear actuators and hinges to the mix so you can create things that move, including a 4-meter high animatronic robot.

Continue reading “Build Your Next Dancing Robot From Empty Soda Bottles”

Supercon: How Many Hardware Talks Can Be Packed Into One Conference?

How can we fit so many impressive talks onto two stages at the Hackaday Superconference? We’ll be bursting at the seams in November as the hardware world gathers in Pasadena for this annual pilgrimage. This year’s Supercon will have more talks and workshops than ever before!

This is the Ultimate Hardware Conference and you need to be there! We’ll continue to announce speakers and workshops as final confirmations come in. Supercon will sell out so grab your ticket now before it’s too late.

Ken Shirriff
Studying Silicon: Reverse Engineering Integrated Circuits

From the outside, integrated circuits are mysterious black boxes. Here’s how to open up some famous analog and digital chips including 8008 microprocessor, 555 timer, the first FPGA chip, Intel’s first RAM, the 76477 sound effects chip, and a counterfeit RAM chip.

Jennifer Wang
Building IMU-based Gesture Recognition

If you combine IMUs with machine learning (ML), you can detect gestures! Experimenting with these devices that sense both motion and orientation is a great way to get ML into your hacker toolkit.

Michael Schuldt
Adventures in Manufacturing Automation

A software engineer explores manufacturing automation, featuring complex software solutions and redemption in the form of reusable hardware components.

Adam McCombs
A Hacker’s Guide to Electron Microscopy

Working on electron microscopes means learning about everything from analog and digital circuit repairs, to how to rig and transport scopes, servicing 120KV+ high voltage tanks, and working on complex high vacuum systems.

Justin McAllister
Simple Antennas to Survive the Zombie Apocalypse

From $10 USB software defined radios to cheap imported transceivers, it’s easier than ever to have a multi-purpose radio in your lab. Low cost antennas can be built by beginners easily to send and receive radio signals from frequencies covering worldwide HF to local VHF, UHF, and microwave.

Alex Glow
What Went Wrong with Archimedes (the Robot Owl)?

Building a wearable, AI-powered robotic owl, is both easier and harder than it looks. Explore the challenges of 3D printing, coding, and how to confront them with creativity.

Kerry Scharfglass
The Economics of Conference Badges at Medium Scale

Discover manufacturing processes and make decisions with an eye towards economics. Buying 30,000 RGB LEDs, using big red arrows to communicate through a translator, and more!

 

Jeremy Hong
Electronic Warfare: A Brief Overview of Weaponized RF Designs

Whether you are trying to avoid having a multi-million dollar fighter jet from being shot down or avoid a speeding ticket from law enforcement , the same radar and electronic warfare equations and concepts apply.

We Want You at Supercon!

The Hackaday Superconference is a can’t-miss event for hardware hackers everywhere. Join in on three amazing days of talks and workshops focusing on hardware creation. This is your community of hardware hackers who congregate to hack on the official hardware badge and on a slew of other projects that show up for the fun. Get your ticket right away!

Robot Solves Rubik’s Cube With One Hand Tied Behind Its Back

For all those who have complained about Rubik’s Cube solving robots in the past by dismissing purpose-built rigs that hold the cube in a non-anthropomorphic manner: checkmate.

The video below shows not only that a robot can solve the classic puzzle with mechanical hands, but it can also do it with just one of them – and that with only three fingers. The [Yamakawa] lab at the University of Tokyo built the high-speed manipulator to explore the kinds of fine motions that humans perform without even thinking about them. Their hand, guided by a 500-fps machine vision system, uses two opposing fingers to grip the lower part of the cube while using the other finger to flick the top face of the cube counterclockwise. The entire cube can also be rotated on the vertical axis, or flipped 90° at a time. Piecing these moves together lets the hand solve the cube with impressive speed; extra points for the little, “How’s that, human?” flick at the end.

It might not be the fastest cube solver, or one that’s built right into the cube itself, but there’s something about the dexterity of this hand that we really appreciate.

Continue reading “Robot Solves Rubik’s Cube With One Hand Tied Behind Its Back”