Automate Your Comfort Food Prep With An IoT Grilled Cheese Robot

What exactly qualifies as comfort food is very much in the palate of the comfortee. Grilled cheese may not work for everyone under every circumstance, but we’ll risk a bet that the gooey delicacy is pretty close to universal, especially when you’re under the weather.

But if you’re too sick to grill up your own and don’t have anyone to do it for you, this grilled cheese sandwich-making robot might be the perfect kitchen accessory. Dubbed “The Cheeseborg” and built as a semester project by [Taylor Tabb], [Mitchell Riek], and [Evan Hill] at Carnegie-Mellon University, the bot takes a few shortcuts that might rankle the grilled cheese purist. Chief among these is the use of a sandwich press rather than a plain griddle. We understand that this greatly simplifies the flipping problem, but to us the flipping, especially the final high arcing double backflip onto the sandwich plate, is all part of the experience. Yes, a fair number of sandwiches end up going to the dog that way, but that’s beside the point.

As realized, Cheeseborg feeds bread and cheese from stacks using a vacuum arm, sprays the grill with butter, and uses a motorized arm to push the uncooked sandwich into the press. At the peak of grilled perfection, the press opens and ejects the sandwich to a waiting plate. As an added bonus, the whole thing is Google Assistant enabled so you can beseech Cheeseborg to fix you a sandwich from your sick bed. See it in action below.

This is far from the first culinary robot to grace our pages. There was the recent CNC sausage bot, we’ve seen plenty of pancake bots, and even [Ben Krasnow] once automated cookie making.

Continue reading “Automate Your Comfort Food Prep With An IoT Grilled Cheese Robot”

Robot Can’t Take Its Eyes Off The Bottle

Robots, as we currently understand them, tend to run on electricity. Only in the fantastical world of Futurama do robots seek out alcohol as both a source of fuel and recreation. That is, until [Les Wright] and his beer seeking robot came along. (YouTube, video after the break.)

A Raspberry Pi 3 provides the brains, with an Intel Neural Compute stick plugged in as an accelerator for neural network tasks. This hardware, combined with the OpenCV image detection software, enable the tracked robot to identify objects and track their position accordingly.

That a beer bottle was chosen is merely an amusing aside – the software can readily identify many different object categories. [Les] has also implemented a search feature, in which the robot will scan the room until a target bottle is identified. The required software and scripts are available on GitHub for your perusal.

Over the past few years, we’ve seen an explosion in accelerator hardware for deep learning and neural network computation. This is, of course, particularly useful for robotics applications where a link to cloud services isn’t practical. We look forward to seeing further development in this field – particularly once the robots are able to open the fridge, identify the beer, and deliver it to the couch in one fell swoop. The future will be glorious!

 

Continue reading “Robot Can’t Take Its Eyes Off The Bottle”

Arduino RC Transmitter For Homebrew Projects

The field of radio control has benefited much from the onward march of technology. Where a basic 2-channel setup would once have cost hundreds of dollars, it’s now possible to get a high-end 2.4GHz 9-channel rig for well under $100, shipped to your door. However, the vast majority of these systems are closed-source and built for purpose. Sometimes, there are benefits to doing things your own way, and that’s precisely what this project does.

At its heart, it’s a simple combination. An Arduino Pro Mini talks to a NRF24L01 which handles the wireless communication. At that point, it’s up to you – throw in as few or as many controls as you like. For this build, [HowToMechatronics] has gone with a twin-stick setup, with a pair of potentiometers and twin toggle switches to round out the options.

The build comes in handy, as it’s possible to program in whatever features you may need for a given project. [HowToMechatronics] has used it to control a hexapod robot, among other projects. It’s a build that shows that with cheap and readily available parts, it’s possible to whip up a custom solution to suit your needs.

If this topic interests you.it’s worth saying that even those closed source radio control products can sometimes be hacked.

[Thanks to Baldpower for the tip!]

Twelve Circuit Sculptures We Can’t Stop Looking At

Circuits are beautiful in their own way, and a circuit sculpture takes that abstract beauty and makes it into a purposeful art form. Can you use the wires of the circuits themselves as the structure of a sculpture, and tell a story with the use and placement of every component? Anyone can exercise their inner artist using this medium and we loved seeing so many people give it a try. Today we announce the top winners and celebrate four score of entries in the Hackaday Circuit Sculpture Contest.

Let’s take a look at twelve outstanding projects that caught (and held) our eye:

Continue reading “Twelve Circuit Sculptures We Can’t Stop Looking At”

Robot’s Actions And Our Reactions

If you walk into a dog owner’s home that dog is probably going to make a beeline to see if you are a threat. If you walk into a cat owner’s home, you may see the cat wandering around, if it even chooses to grace you with its presence. For some people, a dog’s direct approach can be nerve-wracking, or even scary depending on their history and relative size of the dog. Still, these domestic animals are easy to empathize with especially if you or your family have a pet. They have faces which can convey curiosity or smug indifference but what if you were asked to judge the intent of something with no analogs to our own physical features like a face or limbs? That is what researchers at the IDC Herzliya in Israel and Cornell University in the US asked when they made the Greeting Machine to move a moon-like sphere around a planet-like sphere.

Participants were asked to gauge their feelings about the robot after watching the robot move in different patterns. It turns out that something as simple as a sphere tracing across the surface of another sphere can stir consistent and predictable emotions in people even though the shapes do not resemble a human, domestic pet, or anything but a snowman’s abdomen. This makes us think about how our own robots must be perceived by people who are not mired in circuits all day. Certainly, a robot jellyfish lazing about in the Atlantic must feel less threatening than a laser pointer with a taste for human eyeballs.

 

Continue reading “Robot’s Actions And Our Reactions”

Robot Arm Is A Fast Learner

Not long ago, machines grew their skills when programmers put their noses to the grindstone and mercilessly attacked those 104 keys. Machine learning is turning some of that around by replacing the typing with humans demonstrating the actions they want the robot to perform. Suddenly, a factory line-worker can be a robot trainer. This is not new, but a robot needs thousands of examples before it is ready to make an attempt. A new paper from researchers at the University of California, Berkeley, are adding the ability to infer so robots can perform after witnessing a task just one time.

A robotic arm with no learning capability can only be told to go to (X,Y,Z), pick up a thing, and drop it off at (X2, Y2, Z2). Many readers have probably done precisely this in school or with a homemade arm. A learning robot generates those coordinates by observing repeated trials and then copies the trainer and saves the keystrokes. This new method can infer that when the trainer picks up a piece of fruit, and drops it in the red bowl, that the robot should make sure the fruit ends up in the red bowl, not just the location where the red bowl was before.

The ability to infer is built from many smaller lessons, like moving to a location, grasping, and releasing and those are trained with regular machine learning, but the inference is the glue that holds it all together. If this sounds like how we teach children or train workers, then you are probably thinking in the right direction.

Continue reading “Robot Arm Is A Fast Learner”

One More Weekend To Sculpt Your Circuits!

Drop what you’re doing and get thee to thy workshop. This is the last weekend of the Hackaday Circuit Sculpture Contest, the perfect chance for you to exercise the creative hacker within by building something artistic using stuff you already have on hand.

The concept is simple: build a sculpture where the electronic circuit is the sculpture. Wire the components up in a way that shows off that wiring, and uses it as the structure of the art piece. Seven top finishers will win prizes, but really we want to see everyone give this a try because the results are so cool! Need proof? Check out all the entries, then ooh and ah over a few we’ve picked out below. You have until this Tuesday at noon Pacific time to get in the game.

These are just three awesome examples of the different styles we’ve seen so far in the contest. Who needs a circuit board for a retro computer? Most people… but apparently not [Matseng] as this Z80 computer is freformed yet still interactive.

Really there can’t be many things more horrifying than the thought of spider robots, but somehow [Sunny] has taken away all of our fears. The 555 spider project takes “dead bug” to a whole new level. We love the angles in the legs, and the four SMD LEDs as spider eyes really finish the look of the tiny beast.

Finally, the 3D design of [Emily Valesco’s] RGB Atari Punk Console is spectacular. It’s a build that sounds great, and looks as though it will hold up to regular use. But visually, this earns a place on your desk long after the punky appeal wears off. We also like it that she added a color-coded photograph to match up the structure to the schematic, very cool!

What are you waiting for, whether it’s a mess of wires or a carefully structured electron ballet, we want to see your Circuit Sculpture!