A map of the United States showing a series of interconnected lines in white, red, orange, yellow, and green to denote fiber optic and electrical transmission lines. Dots of white, orange, and yellow denote the location of the data centers relative to nearby metropolitan centers.

NREL Maps Out US Data Infrastructure

Spending time as wee hackers perusing the family atlas taught us an appreciation for a good map, and [Billy Roberts], a cartographer at NREL, has served up a doozy with a map of the data center infrastructure in the United States. [via LinkedIn]

Fiber optic lines, electrical transmission capacity, and the data centers themselves are all here. Each data center is a dot with its size indicating how power hungry it is and its approximate location relative to nearby metropolitan areas. Color coding of these dots also helps us understand if the data center is already in operation (yellow), under construction (orange), or proposed (white).

Also of interest to renewable energy nerds would be the presence of some high voltage DC transmission lines on the map which may be the future of electrical transmission. As the exact location of fiber optic lines and other data making up the map are either proprietary, sensitive, or both, the map is only available as a static image.

If you’re itching to learn more about maps, how about exploring why they don’t quite match reality, how to bring OpenStreetMap data into Minecraft, or see how the live map in a 1960s airliner worked.

Digitally-Converted Leica Gets A 64-Megapixel Upgrade

Leica’s film cameras were hugely popular in the 20th century, and remain so with collectors to this day. [Michael Suguitan] has previously had great success converting his classic Leica into a digital one, and now he’s taken the project even further.

[Michael’s] previous work saw him create a so-called “digital back” for the Leica M2. He fitted the classic camera with a Raspberry Pi Zero and a small imaging sensor to effectively turn it into a digital camera, creating what he called the LeicaMPi. Since then, [Michael] has made a range of upgrades to create what he calls the LeicaM2Pi.

The upgrades start with the image sensor. This time around, instead of using a generic Raspberry Pi camera, he’s gone with the fancier ArduCam OwlSight sensor. Boasting a mighty 64 megapixels, it’s still largely compatible with all the same software tools as the first-party cameras, making it both capable and easy to use. With a  crop factor of 3.7x, the camera’s Voigtlander 12mm lens has a much more useful field of view.

Unlike [Michael’s] previous setup, there was also no need to remove the camera’s IR filter to clear the shutter mechanism. This means the new camera is capable of taking natural color photos during the day.  [Michael] also added a flash this time around, controlled by the GPIOs of the Raspberry Pi Zero. The camera also features a much tidier onboard battery via the PiSugar module, which can be easily recharged with a USB-C cable.

If you’ve ever thought about converting an old-school film camera into a digital shooter, [Michael’s] work might serve as a great jumping off point. We’ve seen it done with DSLRs, before, too! Video after the break.

Continue reading “Digitally-Converted Leica Gets A 64-Megapixel Upgrade”

Pong In Discrete Components

The choice between hardware and software for electronics projects is generally a straighforward one. For simple tasks we might build dedicated hardware circuits out of discrete components for reliability and low cost, but for more complex tasks it could be easier and cheaper to program a general purpose microcontroller than to build the equivalent circuit in hardware. Every now and then we’ll see a project that blurs the lines between these two choices like this Pong game built entirely out of discrete components.

The project begins with a somewhat low-quality image of the original Pong circuit found online, which [atkelar] used to model the circuit in KiCad. Because the image wasn’t the highest resolution some guesses needed to be made, but it was enough to eventually produce a PCB and bill of material. From there [atkelar] could start piecing the circuit together, starting with the clock and eventually working through all the other components of the game, troubleshooting as he went. There were of course a few bugs to work out, as with any hardware project of this complexity, but in the end the bugs in the first PCB were found and used to create a second PCB with the issues solved.

With a wood, and metal case rounding out the build to showcase the circuit, nothing is left but to plug this in to a monitor and start playing this recreation of the first mass-produced video game ever made. Pong is a fairly popular build since, at least compared to modern games, it’s simple enough to build completely in hardware. This version from a few years ago goes even beyond [atkelar]’s integrated circuit design and instead built a recreation out of transistors and diodes directly.

Continue reading “Pong In Discrete Components”

Do You Need A Bench Meter?

If you do anything with electronics or electricity, it is a good bet you have a multimeter. Even the cheapest meter today would have been an incredible piece of lab gear not long ago and, often, meters today are lighter and have more features than the old Radio Shack meters we grew up with. But then there are bench meters. [Learn Electronics Repair] reviews an OWON XDM1241 meter, and you have to wonder if it is better than just a decent handheld device. Check out the video below and see what you think.

Some of the advantage of a bench meter is just convenience. They stay in one place and often have a bigger display than a handheld. Of course, these days, the bench meter isn’t much better than a handheld anyway. In fact, one version of this meter even has a battery, if you want to carry it around.

Continue reading “Do You Need A Bench Meter?”

Announcing The 2025 Pet Hacks Winners

When you really love your pawed, feathered, or scaled friends, you build projects for them. (Well, anyway, that’s what’s happened to us.) For the 2025 Pet Hacks Challenge, we asked you to share your favorite pet-related hacks, and you all delivered. So without further ado, here are our favorites, as well as the picks-of-the-litter that qualified for three $150 DigiKey gift certificates. Spoiler alert: it was a clean sweep for team cat.

Continue reading “Announcing The 2025 Pet Hacks Winners”

Why Trijets Lost Against Twinjets

If you’re designing a new jet-powered airplane, one of the design considerations is the number of jet engines you will put on it. Over the course of history we have seen everywhere from a single engine, all the way up to four and beyond, with today airliners usually having two engines aside from the Boeing 747 and Airbus A380 has been largely phased out. Yet for a long time airliners featured three engines, which raises the question of why this configuration has mostly vanished now. This is the topic of a recent YouTube video by [Plane Curious], embedded below.

The Boeing 727, DC-10 and L-1011 TriStar are probably among the most well-known trijets, all being unveiled around the same time. The main reason for this was actually regulatory, as twin-engine designs were thought to be too unsafe for long flights across oceans, while quad-jet designs were too fuel-hungry. This remained the situation until newer jet engine designs that were more reliable and powerful, leading to new safety standards  (ETOPS) that allowed twinjets to fly these longer routes as well. Consequently, the last passenger trijet – an MD-11 KLM flight – touched down in 2014.

Along with the engineering and maintenance challenges that come with having a tail-mounted jet engine, the era of trijets seem to have firmly come to an end, at least for commercial airliners.

Continue reading “Why Trijets Lost Against Twinjets”

Mining And Refining: Drilling And Blasting

It’s an inconvenient fact that most of Earth’s largesse of useful minerals is locked up in, under, and around a lot of rock. Our little world condensed out of the remnants of stars whose death throes cooked up almost every element in the periodic table, and in the intervening billions of years, those elements have sorted themselves out into deposits that range from the easily accessed, lying-about-on-the-ground types to those buried deep in the crust, or worse yet, those that are distributed so sparsely within a mineral matrix that it takes harvesting megatonnes of material to find just a few kilos of the stuff.

Whatever the substance of our desires, and no matter how it is associated with the rocks and minerals below our feet, almost every mining and refining effort starts with wresting vast quantities of rock from the Earth’s crust. And the easiest, cheapest, and fastest way to do that most often involves blasting. In a very real way, explosives make the world work, for without them, the minerals we need to do almost anything would be prohibitively expensive to produce, if it were possible at all. And understanding the chemistry, physics, and engineering behind blasting operations is key to understanding almost everything about Mining and Refining.

Continue reading “Mining And Refining: Drilling And Blasting”