Steampunk Copper PC Is As Cool As It Runs

Copper! The only thing it does better than conduct heat is conduct a great steampunk vibe. [Billet Labs]’ latest video is an artfully done wall PC that makes full use of both of those properties.

The parts are what you’d expect in a high-end workstation PC: a Ryzen 9 and an 3090Ti with oodles of RAM. It’s the cooling loop where all the magic happens: from the copper block on the CPU, to the plumbing fixtures that give the whole thing a beautiful brewery-chiq shine when polished up. Hopefully the water-block in the GPU is equally cupriferous too, but given the attention to detail in the rest of the build, we cannot imagine [Billet Labs] making such a rookie mistake as to invite Mr. Galvanic Corrosion to the party.

There’s almost no visible plastic or paint; the GPU and PSU are hidden by a brass plates, and even the back panel everything mounts to is shiny metal. Even the fans on the radiator are metal, and customized to look like a quad throttle body or four-barreled carburetor on an old race car. (Though they sound more like a jet takeoff.)

The analog gauges are a particular treat, which push this build firmly into “steampunk” territory. Unfortunately the temperature gauge glued onto the GPU only measures the external temperature of the GPU, not the temperature at the die or even the water-block. On the other hand, given how well this cooling setup seems to work later in the video, GPU temps are likely to stay pretty stable. The other gauges do exactly what you’d expect, measuring the pressure and temperature of the water in the coolant loop and voltage on the twelve volt rail.

Honestly, once it gets mounted on the wall, this build looks more like an art piece than any kind of computer— only the power and I/O cables do anything to give the game away. Now that he has the case, perhaps some artful peripherals are in order?

Continue reading “Steampunk Copper PC Is As Cool As It Runs”

The World’s First Podcaster?

When do you think the first podcast occurred? Did you guess in the 1890s? That’s not a typo. Telefonhírmondó was possibly the world’s first true “telephone newspaper.” People in Budapest could dial a phone number and listen to what we would think of now as radio content. Surprisingly, the service lasted until 1944, although after 1925, it was rebroadcasting a radio station’s programming.

Tivadar Puskás, the founder of Budapest’s “Telephone Newspaper” (public domain)

The whole thing was the brainchild of Tivadar Puskás, an engineer who had worked with Thomas Edison. At first, the service had about 60 subscribers, but Puskás envisioned the service one day spanning the globe. Of course, he wasn’t wrong. There was a market for worldwide audio programs, but they were not going to travel over phone lines to the customer.

The Hungarian government kept tight control over newspapers in those days. However, as we see in modern times, new media often slips through the cracks. After two weeks of proving the concept out, Puskás asked for formal approval and for a 50-year exclusive franchise for the city of Budapest. They would eventually approve the former, but not the latter.

Unfortunately, a month into the new venture, Puskás died. His brother Albert took over and continued talks with the government. The phone company wanted a piece of the action, as did the government. Before anything was settled, Albert sold the company to István Popper. He finalized the deal, which included rules requiring signed copies of the news reports to be sent to the police three times a day. The affair must have been lucrative. The company would eventually construct its own telephone network independent of the normal phone system. By 1907, they boasted 15,000 subscribers, including notable politicians and businesses, including hotels. Continue reading “The World’s First Podcaster?”

Ore Formation: Introduction And Magmatic Processes

Hackaday has a long-running series on Mining and Refining, that tracks elements of interest on the human-made road from rocks to riches. What author Dan Maloney doesn’t address in that series is the natural history that comes before the mine. You can’t just plunk down a copper mine or start squeezing oil from any old stone, after all: first, you need ore. Ore has to come from somewhere. In this series, we’re going to get down and dirty into the geology of ore-forming processes to find out from wither come the rocks that hold our elements of interest.

What’s In an Ore?

Though we’re going to be talking about Planetary Science in this series, we should recognize the irony that “ore” is a word without any real scientific meaning. What distinguishes ore from other rock is its utility to human industry: it has elements or compounds, like gems, that we want, and that we think we can get out economically. That changes over time, and one generation’s “rock” can be another generation’s “ore deposits”. For example, these days prospectors are chasing copper in porphyry deposits at concentrations as low as 1000 ppm (0.1%) that simply were not economic in previous decades. The difference? Improvements in mining and refining, as well as a rise in the price of copper. Continue reading “Ore Formation: Introduction And Magmatic Processes”

Building A Trash Can Reverb

These days, if you want a reverb effect, you just dial up whatever software plugin most appeals to you and turn the dials to taste. However, [Something Physical] specialises in… physical things… and thus built a reverb the old fashioned way. Using a trashcan, of course.

The concept is simple enough—the method of operation is exactly the same as any old plate reverb. Audio is played through a speaker connected to the plate (or trashcan), causing it to vibrate. The sound is then picked up at another point on the plate (or trashcan) with some kind of microphonic pickups, amplified, and there you have your reverb signal.

Given it’s built around a piece of street furniture, [Something Physical] has dubbed this the Street-Verb. It uses a class D amp to drive a speaker with a bolt stuck to it. The bolt is then put in contact with the trashcan itself to transfer the vibration. A pair of piezo elements are used as the pickups, run through a preamps built with a humble BC109C transistor. Since there are two pickups, the Street-Verb is effectively a stereo reverb unit, though the input is only mono. [Something Physical] set up the speaker driver and pickups to be easily movable, and was able to test the device with all kinds of street furniture, like gates and street signs, but the trashcan ‘verb setup is by far the most compelling.

We’ve featured other plate reverb builds before, too, albeit less garbage-themed. Video after the break.

Continue reading “Building A Trash Can Reverb”

End Of The Eternal September, As AOL Discontinues Dial-Up

If you used the internet at home a couple of decades or more ago, you’ll know the characteristic sound of a modem  connecting to its dial-up server. That noise is a thing of the past, as we long ago moved to fibre, DSL, or wireless providers that are always on. It’s a surprise then to read that AOL are discontinuing their dial-up service at the end of September this year, in part for the reminder that AOL are still a thing, and for the surprise that in 2025 they still operate a dial-up service.

There was a brief period in which instead of going online via the internet itself, the masses were offered online services through walled gardens of corporate content. Companies such as AOL and Compuserve bombarded consumers with floppies and CD-ROMs containing their software, and even Microsoft dipped a toe in the market with the original MSN service before famously pivoting the whole organisation in favour of the internet in mid 1995. Compuserve was absorbed by AOL, which morphed into the most popular consumer dial-up ISP over the rest of that decade. The dotcom boom saw them snapped up for an exorbitant price by Time Warner, only for the expected bonanza to never arrive, and by 2023 the AOL name was dropped from the parent company’s letterhead. Over the next decade it dwindled into something of an irrelevance, and is now owned by Yahoo! as a content and email portal. This dial-up service seems to have been the last gasp of its role as an ISP.

So the eternal September, so-called because the arrival of AOL users on Usenet felt like an everlasting version of the moment a fresh cadre of undergrads arrived in September, may at least in an AOL sense, finally be over. If you’re one of the estimated 0.2% of Americans still using a dial-up connection don’t despair, because there are a few other ISPs still (just) serving your needs.

The Trials Of Trying To Build An Automatic Filament Changer

Running out of filament mid-print is a surefire way to ruin your parts and waste a lot of time. [LayerLab] was sick of having this problem, and so sought to find a proper solution. Unfortunately, between off-the-shelf solutions and homebrew attempts, he was unable to solve the problem to his satisfaction.

[LayerLab] had a simple desire. He wanted his printer to swap to a second spool of filament when the first one runs out, without ruining or otherwise marring the print. It sounds simple, but the reality is more complicated. As an Australian, he couldn’t access anything from InfinityFlow, so he first attempted to use the “auto refill” features included on the Bambu Labs AMS 2. However, it would routinely make filament changes in outside wall areas of a print, leaving unsightly marks and producing poorer quality parts.

His next effort was to use the Wisepro Auto Refill Filament Buffer. It’s a feeder device that takes filament from two spools, and starts feeding the backup spool in to your printer when the primary spool runs out. Unfortunately, [LayerLab] had a cavalcade of issues with the device. It would routinely feed from the secondary spool when there was still primary filament available, jamming the device, and it didn’t come with a proper mounting solution to work with consumer printers. It also had bearings popping out the top of the housing. Attempts to rework the device into a larger twin-spool rig helped somewhat, but ultimately the unreliability of the Wisepro when changing from one spool to another meant it wasn’t fit for purpose. Its feeder motors were also to trigger the filament snag cutters that [LayerLab] had included in his design.

Ultimately, the problem remains unsolved for [LayerLab]. They learned a lot along the way, mostly about what not to do, but they’re still hunting for a viable automatic filament changer solution that suits their needs. Filament sensors help, but can only do so much. If you reckon you know the answer, or a good way forward, share your thoughts in the comments. Video after the break.

Continue reading “The Trials Of Trying To Build An Automatic Filament Changer”

A photo of the circuit board with components soldered on

A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode

Normally when you think solar projects, you think of big photovoltaic cells. But a photodiode is just an inefficient, and usually much smaller, PV cell. Since [Pocket Concepts]’s Solar_nRF has such a low power budget, it can get away with using BPW34 photodiodes in place of batteries. (Video, embedded below.)

The BPW34 silicon PIN photodiode feeds a small voltage into a BQ25504 ultra-low-power boost converter energy harvester which stores power in a capacitor. When the capacitor is fully charged the battery-good pin is toggled which drives a MOSFET that powers everything downstream.

When it’s powered on, the Nordic nRF initializes, reads the current temperature from an attached I2C thermometer, and then sends out a Bluetooth Low Energy (BLE) advertising packet containing the temperature data. When the capacitor runs out of energy, the battery-good pin is turned off and downstream electronics become unpowered and the cycle begins again.

Continue reading “A Solar-Only, Battery-Free Device That Harvests Energy From A BPW34 Photodiode”