Wiring Up 100 Car Batteries So You Don’t Have To

We’re willing to bet most Hackaday readers have accidentally spot welded a few electrical contacts together over the years, complete with the surge of adrenaline that comes with the unexpected pops and sparks. It’s a mistake you’ll usually only make once or twice. But where most of us would look back at such mishaps as cautionary experiences, [Styropyro] sees an opportunity.

Armed with 100 car batteries wired in parallel, his recent video sees him pitting an assortment of household objects against the combined might of eighty-five thousand amps. Threaded rods, bolts, and angle iron all produce the sort of lightshow you’d expect, but [Styropyro] quickly discovered that holding larger objects down was more difficult than anticipated. It turns out that the magnetic fields being generated by the incredible amount of current rushing through the system was pulling the terminals apart and breaking the connection. After reinforcing the business end of his rig, he was able to tackle stouter objects such as crowbars and wrenches with explosive results.

A modified log splitter serves as a remotely operated switch.

We found that his remotely operated switch, built out of a hydraulic log splitter, to be a particular highlight of the video — unfortunately he only briefly goes over its construction at the very start. His side experiment, fashioning an sort of manually-operated carbon arc lamp with a pair of thick graphite electrodes and demonstrating is luminous efficacy compared to modern LEDs was an unexpected treat. As was the off-the-shelf domestic circuit breaker that impressed [Styropyro] by refusing to yield even after repeated jolts.

While the showers of sparks and vaporized metal might trigger some sweaty palms among the audience, we’ve seen [Styropyro] handle far scarier contraptions in the past. Though he may come off as devil-may-care in his videos, we figure there’s no way he could have made it this long without blinding or maiming himself if he didn’t know what he was doing.

Continue reading “Wiring Up 100 Car Batteries So You Don’t Have To”

Could Moon Dust Help Reduce Global Temperatures?

The impacts of climate change continue to mount on human civilization, with warning signs that worse times are yet to come. Despite the scientific community raising an early warning as to the risks of continued air pollution and greenhouse gas output, efforts to stem emissions have thus far had minimal impact. Continued inaction has led some scientists to consider alternative solutions to stave off the worst from occurring.

Geoengineering has long been touted as a potential solution for our global warming woes. Now, the idea of launching a gigantic dust cloud from the moon to combat Earth’s rising temperatures is under the spotlight. However, this very sci-fi solution has some serious implications if pursued, if humanity can even achieve the feat in the first place.

Continue reading “Could Moon Dust Help Reduce Global Temperatures?”

Raspberry Pi Reveals A Little About Their RP1 Peripheral

The Raspberry Pi 5 is the new hotness from the Cambridge-based single board computer vendor, thanks in part to its new wonder-chip peripheral that speeds up much of its interfacing with the world. The RP1 hangs of the CPU’s PCIe bus and takes on many functions previously in the SoC, and those curious about it now have a little bit of information. Eben Upton has posted an article about the chip, and there’s a partial datasheet and a video in which the engineers talk about the chip as well.

The datasheet is intended to help anyone wishing to write a hardware driver for a Pi 5, and they admit that it doesn’t reveal everything on the silicon. We don’t expect them to put this chip up for sale on its own because doing so would enable their competitors to produce something much closer to a Pi 5 clone. It does reveal a few nuggets, though; there are a couple of Cortex M3 cores for housekeeping, and alongside all the interfaces we know from earlier boards it has, perhaps most interestingly for Hackaday readers, a 12-bit analogue-to-digital converter. This has always been on our Pi wishlist and is a welcome addition.

So, if you read the datasheet and watch the video below, you’ll learn a lot about the interfaces and how to talk to them, but not quite so much about the full workings of the chip itself. They hint that there’s more to be released, but since the Pi people have a history of not letting go of the family silver, we won’t expect the keys to the kingdom.

Have a read of our Pi 5 launch coverage.

Continue reading “Raspberry Pi Reveals A Little About Their RP1 Peripheral”

Implant Fights Diabetes By Making Insulin And Oxygen

Type 1 diabetes remains a problem despite having an apparently simple solution: since T1D patients have lost the cells that produce insulin, it should be possible to transplant those cells into their bodies and restore normal function. Unfortunately, it’s not actually that simple, and it’s all thanks to the immune system, which would attack and destroy transplanted pancreas cells, whether from a donor or grown from the patient’s own stem cells.

That may be changing, though, at least if this implantable insulin-producing bioreactor proves successful.  The device comes from MIT’s Department of Chemical Engineering, and like earlier implants, it relies on encapsulating islet cells, which are the insulin-producing cells within the pancreas, inside a semipermeable membrane. This allows the insulin they produce to diffuse out into the blood, and for glucose, which controls insulin production in islet cells, to diffuse in. The problem with this arrangement is that the resource-intensive islet cells are starved of oxygen inside their capsule, which is obviously a problem for the viability of the implant.

The solution: electrolysis. The O2-Macrodevice, as the implant is called, uses a tiny power-harvesting circuit to generate oxygen for the islet cells directly from the patient’s own interstitial water. The circuit applies a current across a proton-exchange membrane, which breaks water molecules into molecular oxygen for the islet cells. The hydrogen is said to diffuse harmlessly away; it seems like that might cause an acid-base imbalance locally, but there are plenty of metabolic pathways to take care of that sort of thing.

The implant looks promising; it kept the blood glucose levels of diabetic mice under control, while mice who received an implant with the oxygen-generating cell disabled started getting hyperglycemic after two weeks. What’s really intriguing is that the study authors seem to be thinking ahead to commercial production, since they show various methods for mass production of the cell chamber from standard 150-mm silicon wafers using photolithography.

Type 1 diabetics have been down the “artificial pancreas” road before, so a wait-and-see approach is clearly wise here. But it looks like treating diabetes less like a medical problem and more like an engineering problem might just pay dividends.

Giant LED Matrix Fills Blank Space In The Kitchen

We’ve all got one: a blank space somewhere in our home that we don’t know what to do with. [James Miller] had one above his kitchen cabinets, so he filled it with a giant LED matrix. The result is a large but surprisingly attractive LED screen that can send messages, provide illumination, or while away the idle hours of the night playing Conway’s Game of Life.

[James] built the matrix using the usual suspect for these builds: several strings of WS2812 lights . He initially ran this from a Raspberry Pi, but realized that there was no need for such a dizzying amount of computing power, so he switched to an ESP32 instead. The frame is built from wood and foam board.

The first version he built used a fabric diffuser, but after a close encounter with a flaming steak, he switched over to commercial ceiling light diffusers cut down to size. We might have been tempted to keep going and try an “egg crate” style ceiling light panel for a the smaller pixel size, but [James] thinks he has reached the “good enough” point of this project. It’s certainly a fun build, and it looks very cool with minimal materials.

Continue reading “Giant LED Matrix Fills Blank Space In The Kitchen”

Decoding The 8088

There is a lot to like about open software, and in some areas, a well-thought-out piece of software can really make a huge impact. A great example of this is the Sigrok project. Creating simple devices that act like a logic analyzer is relatively easy. What’s hard is writing nice software for such a setup including protocol decoders. Sigrok has done it and since it is open, you can add your device and decode your protocol. [GloriousCow] had done the hardware part of interfacing to the 8088 in an IBM PC using an off-the-shelf logic analyzer that uses a customized version of Sigrok. But the output was a CSV file you had to process in a spreadsheet program. The next step: write a decoder for Sigrok to understand 8088 bus cycles.

The post covers the details of writing such a plug-in for Pulseview, the Sigrok GUI. It will also work for the command line interface if you prefer that. The code is in Python.

Continue reading “Decoding The 8088”

E-Bikes Turned Solar Car

There is something to be said for a vehicle that gains range just by standing outside in the sun. In the video after the break, [Drew Builds Stuff] demonstrates how he turned a pair of bicycles into a solar-powered vehicle.

The inspiration for this build started with a pair of 20″ steel framed fat tire bikes [Drew] picked up in a liquidation sale. He welded up a simple steel chassis, and attached the partial bicycle frame and forks to the chassis, using them as steerable front wheels. A short arm was welded to each of the fork, linking them together with threaded rods and rod ends that connect to centrally mounted handlebars. The rear driving wheels are from a 20″ e-bike conversion kit, with the disk brake assembly from the cannibalized bikes.

The solar part of this build comes in the form of three 175W flexible solar panels mounted on cedar frames, coming in at 10 lbs per mounted panel. [Drew] considered using conventional rigid solar panels, but they would have been 4-6 times heavier. The two panels mounted to the rear of the vehicle are on a hinged frame to allow easy access to the electronics below. Battery storage is made up of two 24V 100Ah batteries wired in series, connected to a 60A solar charge controller and the e-bike motor controllers.

The vehicle has a top speed of about 45km/h and 100km range on batteries alone. It might not be fast or engineered for maximum efficiency, but it looks like a ton of fun and relatively simple to build. As [Drew] says, it’s not a how-to for building a perfect solar-powered vehicle, it’s how he built one.

Continue reading “E-Bikes Turned Solar Car”